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Thread synchronizationThread synchronization

 Threads are run by the Executor

 If two threads wish to modify a shared object, we 
need synchronization

● Mutual exclusion (mutex): only one thread 
accesses shared object at a time

● Locks: a way to implement mutex
 Thread asks for lock before modifying object
 If it gets the lock, it can modify
 If not, wait (block) until the lock is freed
 Free the lock when done modifying
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Lock interfaceLock interface

 Any object can be a lock if it implements Lock
 In package java.util.concurrent.locks

● Two methods: .lock() and .unlock()
 .lock() will wait until the lock is freed
 If many threads are waiting, which one gets it first?

 ReentrantLock: can set fairness policy

● Longest-waiting thread gets the lock first
 Deadlock happens when each thread is waiting 

on a lock held by another thread
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synchronizedsynchronized block block

 Every Java object has a built-in monitor lock

 Code that needs exclusive access to an object can 
use a synchronized block:

synchronized ( studentDB ) {
studentDB.addStudent();

}

 Waits for and acquires the monitor lock on the 
object

 Releases the lock when done

 Don't need to implement the Lock interface

● See AddApples.java
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