
Thread Synchronization:Thread Synchronization:
Built-in Monitor LocksBuilt-in Monitor Locks

28 March 2008
CMPT166
Dr. Sean Ho
Trinity Western University

28 Mar 200828 Mar 2008CMPT166: producer-consumerCMPT166: producer-consumer 22

Thread synchronizationThread synchronization

 Threads are run by the Executor

 If two threads wish to modify a shared object, we
need synchronization

● Mutual exclusion (mutex): only one thread
accesses shared object at a time

● Locks: a way to implement mutex
 Thread asks for lock before modifying object
 If it gets the lock, it can modify
 If not, wait (block) until the lock is freed
 Free the lock when done modifying

28 Mar 200828 Mar 2008CMPT166: producer-consumerCMPT166: producer-consumer 33

Lock interfaceLock interface

 Any object can be a lock if it implements Lock
 In package java.util.concurrent.locks

● Two methods: .lock() and .unlock()
 .lock() will wait until the lock is freed
 If many threads are waiting, which one gets it first?

 ReentrantLock: can set fairness policy

● Longest-waiting thread gets the lock first
 Deadlock happens when each thread is waiting

on a lock held by another thread

28 Mar 200828 Mar 2008CMPT166: producer-consumerCMPT166: producer-consumer 44

synchronizedsynchronized block block

 Every Java object has a built-in monitor lock

 Code that needs exclusive access to an object can
use a synchronized block:

synchronized (studentDB) {
studentDB.addStudent();

}

 Waits for and acquires the monitor lock on the
object

 Releases the lock when done

 Don't need to implement the Lock interface

● See AddApples.java

	Title Slide
	Slide 2
	Slide 3
	Slide 4

