Thread Synchronization:
Built-in Monitor Locks

28 March 2008

CMPT166

Dr. Sean Ho

Trinity Western University

¢ TRINITY

VWESTFR M
W INIVERSITY

Thread synchronization

® Threads are run by the Executor

m |[f two threads wish to modify a shared object, we
need synchronization

Mutual exclusion (mutex): only one thread
accesses shared object at a time

Locks: a way to implement mutex

Thread asks for lock before modifying object
If it gets the lock, it can modify

If not, wait (block) until the lock is freed
Free the lock when done modifying

¢ TRINITY

WA
W mnjr{;l:n'f:ﬁ—v CMPT166: producer-consumer 28 Mar 2008 2

Lock interface

® Any object can be a lock if it implements Lock
+ |n package java.util.concurrent.locks
Two methods: .lock() and .unlock()

+ lock() will wait until the lock is freed
+ If many threads are waiting, which one gets it first?

m ReentrantLock: can set fairness policy
Longest-waiting thread gets the lock first

m Deadlock happens when each thread is waiting
on a lock held by another thread

¢ TRINITY

WESTERN _
W INIVFRSITY CMPT166: producer-consumer 28 Mar 2008

synchronized block

® Every Java object has a built-in monitor lock

®m Code that needs exclusive access to an object can
use a synchronized block:

synchronized (studentDB) {
studentDB.addStudent();

§

®m Waits for and acquires the monitor lock on the
object

m Releases the lock when done
® Don't need to implement the Lock interface
s, 2See AddApples.java

WESTERN
L LINIVFRSITY CMPT166: producer-consumer 28 Mar 2008

	Title Slide
	Slide 2
	Slide 3
	Slide 4

