
Thread Synchronization:Thread Synchronization:
Built-in Monitor LocksBuilt-in Monitor Locks

28 March 2008
CMPT166
Dr. Sean Ho
Trinity Western University

28 Mar 200828 Mar 2008CMPT166: producer-consumerCMPT166: producer-consumer 22

Thread synchronizationThread synchronization

 Threads are run by the Executor

 If two threads wish to modify a shared object, we
need synchronization

● Mutual exclusion (mutex): only one thread
accesses shared object at a time

● Locks: a way to implement mutex
 Thread asks for lock before modifying object
 If it gets the lock, it can modify
 If not, wait (block) until the lock is freed
 Free the lock when done modifying

28 Mar 200828 Mar 2008CMPT166: producer-consumerCMPT166: producer-consumer 33

Lock interfaceLock interface

 Any object can be a lock if it implements Lock
 In package java.util.concurrent.locks

● Two methods: .lock() and .unlock()
 .lock() will wait until the lock is freed
 If many threads are waiting, which one gets it first?

 ReentrantLock: can set fairness policy

● Longest-waiting thread gets the lock first
 Deadlock happens when each thread is waiting

on a lock held by another thread

28 Mar 200828 Mar 2008CMPT166: producer-consumerCMPT166: producer-consumer 44

synchronizedsynchronized block block

 Every Java object has a built-in monitor lock

 Code that needs exclusive access to an object can
use a synchronized block:

synchronized (studentDB) {
studentDB.addStudent();

}

 Waits for and acquires the monitor lock on the
object

 Releases the lock when done

 Don't need to implement the Lock interface

● See AddApples.java

	Title Slide
	Slide 2
	Slide 3
	Slide 4

