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Design patterns

m A pattern is a named abstraction
from a recurring concrete form '

that expresses the essence of
a proven general solution technique

® A pattern has three parts:
some recurring problem from the real world
the context of the problem (when to solve it)
the rule telling us how to solve it

m Describe a class of problems and how to solve
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Parts of a design pattern

® Name: should be meaningful

® Problem: desired goal and obstacles

m Context: preconditions on problem

B Forces: relevant constraints, trade-offs, caveats
m Solution: structure, relationships, how-to

B Related patterns: codependencies, “see also”

B Known uses: example applications
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Classes of patterns (high to low)

® Conceptual/architectural
Structural organization of software systems
Set of predefined components
Relationships between components
® Design
How to refine each component
Commonly recurring structure of components
® Programming idiom
How to code a particular component feature
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Classes of patterns

® Creational patterns
Interfaces to generate new objects
® Structural patterns
How to organize a large system in components
® Behavioural patterns

How components interact with each other to
accomplish a common goal
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Creational pattern: factory method

m Define an interface for creating an object, but let
subclasses decide which class to instantiate

“Virtual constructor”

B e.g., heed to create a new Person; don't know in
advance if it's Student, Staff, Faculty, or Alumnus

---------------
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Creational pattern: abstract factory

® Provide an interface to create families of related
or dependent objects without specifying their
concrete classes (“kit”)

e.g., adaptable look-and-feel of GUI widgets
®m Can be implemented using a collection of factory

methods
.~ GUIFactory e .
*.newscrollbar() .* [ Scrollbar ;
MacGUIFactory
(newScroIIbar() ) (MacScroIIbaD
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Creational pattern: prototype

m Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype

e.g., sheet-music editor: copy and paste notes
+ Staves are objects; each note is an object

Design each object so it knows how to copy

itself: clone() method ."\usicElement
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Creational pattern: singleton

B Ensure a c
and provic

ve.g., C

ass only has one instance,
e a global point of access to it.

nild has only one mother

m Often imp

emented by making constructor private

Instantiate using static method

Method

checks if instance already exists

+ public class Mother {

private Mother theMom:;
private Mother() {}
public static getMom() {
if theMom = null) return theMom:;
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Structural patterns: facade

®m Provide a unified interface to a set of interfaces in
a subsystem

High-level interface: system is easier to use
e.g., web front-end to complex database:

+ want minimal number of widgets, input boxes

user

/(mEEil

complex subsystem

™" facade
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Other structural patterns

m Adapter/ wrapper: Convert the interface of a
class into another interface clients expect

Lets otherwise incompatible classes cowork

® Bridge: decouple an abstraction from its
implementation so they can vary independently

® Proxy: surrogate/placeholder for another object

® Decorator: dynamically add responsibilities /
functionality to an object

® Flyweight: use sharing to support large numbers
of fine-grained objects efficiently
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Behavioural patterns: observer

® One-to-many dependency between objects so
that when the subject changes state,
all its observers are notified and updated

e.g., many students checking TWU website for
snow closures

e.g., server message “send to all” clients

subject
GbserveD Gbserve) Cobserver)
3
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Other behavioural patterns

® Mediator: an object that encapsulates how a set
of other objects interact.

Promotes loose coupling by keeping objects
from referring to each other directly

®m Chain of responsibility: avoid coupling sender
directly to receiver by passing through chain

B |[terator; access all elements of a collection
B Memento: save/restore state of an object
B Command: make requests objects

queue/log requests, support undo, etc.
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