
Design PatternsDesign Patterns

4 April 2008
CMPT166
Dr. Sean Ho
Trinity Western University



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 22

Design patternsDesign patterns

 A pattern is a named abstraction

● from a recurring concrete form
● that expresses the essence of
● a proven general solution technique

 A pattern has three parts:

● some recurring problem from the real world
● the context of the problem (when to solve it)
● the rule telling us how to solve it

 Describe a class of problems and how to solve



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 33

Parts of a design patternParts of a design pattern

 Name: should be meaningful

 Problem: desired goal and obstacles

 Context: preconditions on problem

 Forces: relevant constraints, trade-offs, caveats

 Solution: structure, relationships, how-to

 Related patterns: codependencies, “see also”

 Known uses: example applications



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 44

Classes of patterns (high to low)Classes of patterns (high to low)

 Conceptual/architectural

● Structural organization of software systems
● Set of predefined components
● Relationships between components

 Design

● How to refine each component
● Commonly recurring structure of components

 Programming idiom

● How to code a particular component feature



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 55

Classes of patternsClasses of patterns

 Creational patterns

● Interfaces to generate new objects
 Structural patterns

● How to organize a large system in components
 Behavioural patterns

● How components interact with each other to 
accomplish a common goal



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 66

Creational pattern: factory methodCreational pattern: factory method

 Define an interface for creating an object, but let 
subclasses decide which class to instantiate

● “Virtual constructor”
 e.g., need to create a new Person; don't know in 

advance if it's Student, Staff, Faculty, or Alumnus

PersonCreator
makePerson()

StudentCreator
makePerson()

Person

Student

subclass subclass



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 77

Creational pattern: abstract factoryCreational pattern: abstract factory

 Provide an interface to create families of related 
or dependent objects without specifying their 
concrete classes (“kit”)

● e.g., adaptable look-and-feel of GUI widgets
 Can be implemented using a collection of factory 

methods
GUIFactory

newScrollbar()

MacGUIFactory
newScrollbar()

Scrollbar

MacScrollbar



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 88

Creational pattern: prototypeCreational pattern: prototype

 Specify the kinds of objects to create using a 
prototypical instance, and create new objects by 
copying this prototype

● e.g., sheet-music editor: copy and paste notes
 Staves are objects; each note is an object

● Design each object so it knows how to copy 
itself: clone() method MusicElement

clone()

Note
clone()

Rest
clone()

Fermata
clone()



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 99

Creational pattern: singletonCreational pattern: singleton

 Ensure a class only has one instance,
and provide a global point of access to it.

 e.g., child has only one mother

 Often implemented by making constructor private

● Instantiate using static method
● Method checks if instance already exists

 public class Mother {

private Mother theMom;
private Mother() {}
public static getMom() {

if (theMom ≠ null) return theMom;



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 1010

Structural patterns: facadeStructural patterns: facade

 Provide a unified interface to a set of interfaces in 
a subsystem

● High-level interface: system is easier to use
● e.g., web front-end to complex database:

 want minimal number of widgets, input boxes

complex subsystem

user

facade



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 1111

Other structural patternsOther structural patterns

 Adapter/ wrapper: Convert the interface of a 
class into another interface clients expect

● Lets otherwise incompatible classes cowork
 Bridge: decouple an abstraction from its 

implementation so they can vary independently

 Proxy: surrogate/placeholder for another object

 Decorator: dynamically add responsibilities / 
functionality to an object

 Flyweight: use sharing to support large numbers 
of fine-grained objects efficiently



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 1212

Behavioural patterns: observerBehavioural patterns: observer

 One-to-many dependency between objects so
that when the subject changes state,
all its observers are notified and updated

● e.g., many students checking TWU website for 
snow closures

● e.g., server message “send to all” clients

subject

observer observer observer



4 Apr 20084 Apr 2008CMPT166: ch12: design patternsCMPT166: ch12: design patterns 1313

Other behavioural patternsOther behavioural patterns

 Mediator: an object that encapsulates how a set 
of other objects interact.

● Promotes loose coupling by keeping objects 
from referring to each other directly

 Chain of responsibility: avoid coupling sender 
directly to receiver by passing through chain

 Iterator: access all elements of a collection

 Memento: save/restore state of an object

 Command: make requests objects

● queue/log requests, support undo, etc.


	Title Slide
	Sample Content
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

