Designh Patterns

4 April 2008

CMPT166

Dr. Sean Ho

Trinity Western University

WP
TRINITY
WESTERN
L LININERSITY



Design patterns

m A pattern is a named abstraction
from a recurring concrete form '

that expresses the essence of
a proven general solution technique

® A pattern has three parts:
some recurring problem from the real world
the context of the problem (when to solve it)
the rule telling us how to solve it

m Describe a class of problems and how to solve

0
TRINITY
VAFSTFRM

L LINIVERSITY CMPT166: ch12: design patterns 4 Apr 2008 2



Parts of a design pattern

® Name: should be meaningful

® Problem: desired goal and obstacles

m Context: preconditions on problem

B Forces: relevant constraints, trade-offs, caveats
m Solution: structure, relationships, how-to

B Related patterns: codependencies, “see also”

B Known uses: example applications

WP
TRINITY
VWESTFR M

L LINIVERSITY CMPT166: ch12: design patterns 4 Apr 2008



Classes of patterns (high to low)

® Conceptual/architectural
Structural organization of software systems
Set of predefined components
Relationships between components
® Design
How to refine each component
Commonly recurring structure of components
® Programming idiom
How to code a particular component feature
v TRINITY

WESTFRN

W INPERSITY CMPT166: ch12: design patterns 4 Apr 2008



Classes of patterns

® Creational patterns
Interfaces to generate new objects
® Structural patterns
How to organize a large system in components
® Behavioural patterns

How components interact with each other to
accomplish a common goal

2 TRINITY

WESTFRN

W INPERSITY CMPT166: ch12: design patterns 4 Apr 2008



Creational pattern: factory method

m Define an interface for creating an object, but let
subclasses decide which class to instantiate

“Virtual constructor”

B e.g., heed to create a new Person; don't know in
advance if it's Student, Staff, Faculty, or Alumnus

---------------

0

W LINPMERSITY

/ PersonCreator"’ . - .

)}

«_makePerson() .’ * Person .

subglass subf/ass
StudentCreator
Student)
makePerson()
TRINITY

WESTERN CMPT166: ch12: design patterns 4 Apr 2008



Creational pattern: abstract factory

® Provide an interface to create families of related
or dependent objects without specifying their
concrete classes (“kit”)

e.g., adaptable look-and-feel of GUI widgets
®m Can be implemented using a collection of factory

methods
.~ GUIFactory e .
*.newscrollbar() .* [ Scrollbar ;
MacGUIFactory
(newScroIIbar() ) (MacScroIIbaD
#? TRINITY
WWESTFRN

W INPERSITY CMPT166: ch12: design patterns 4 Apr 2008



Creational pattern: prototype

m Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype

e.g., sheet-music editor: copy and paste notes
+ Staves are objects; each note is an object

Design each object so it knows how to copy

itself: clone() method ."\usicElement

0
TRINITY
WVAFSTFR M

W INPERSITY CMPT166: ch12: design patterns 4 Apr 2008



Creational pattern: singleton

B Ensure a c
and provic

ve.g., C

ass only has one instance,
e a global point of access to it.

nild has only one mother

m Often imp

emented by making constructor private

Instantiate using static method

Method

checks if instance already exists

+ public class Mother {

private Mother theMom:;
private Mother() {}
public static getMom() {
if theMom = null) return theMom:;

"
TRINITY
WWESTFRN
W LINPMERSITY

CMPT166: ch12: design patterns 4 Apr 2008



Structural patterns: facade

®m Provide a unified interface to a set of interfaces in
a subsystem

High-level interface: system is easier to use
e.g., web front-end to complex database:

+ want minimal number of widgets, input boxes

user

/(mEEil

complex subsystem

™" facade
TRINITY
WECTFR N

L LINIVERSITY CMPT166: ch12: design patterns 4 Apr 2008

10



Other structural patterns

m Adapter/ wrapper: Convert the interface of a
class into another interface clients expect

Lets otherwise incompatible classes cowork

® Bridge: decouple an abstraction from its
implementation so they can vary independently

® Proxy: surrogate/placeholder for another object

® Decorator: dynamically add responsibilities /
functionality to an object

® Flyweight: use sharing to support large numbers
of fine-grained objects efficiently

0
TRINITY
VAFSTFRM

W INPERSITY CMPT166: ch12: design patterns 4 Apr 2008 11



Behavioural patterns: observer

® One-to-many dependency between objects so
that when the subject changes state,
all its observers are notified and updated

e.g., many students checking TWU website for
snow closures

e.g., server message “send to all” clients

subject
GbserveD Gbserve) Cobserver)
3
TRINITY
WESTERN CMPT166: ch12: design patterns 4 Apr 2008 12

W LINPMERSITY



Other behavioural patterns

® Mediator: an object that encapsulates how a set
of other objects interact.

Promotes loose coupling by keeping objects
from referring to each other directly

®m Chain of responsibility: avoid coupling sender
directly to receiver by passing through chain

B |[terator; access all elements of a collection
B Memento: save/restore state of an object
B Command: make requests objects

queue/log requests, support undo, etc.
2

. 2 TRIMNITY
WVWESTERN

W INPERSITY CMPT166: ch12: design patterns 4 Apr 2008

13



	Title Slide
	Sample Content
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

