
Coding Style andCoding Style and
Basic OperatorsBasic Operators

21 Sep 2009
CMPT140
Dr. Sean Ho
Trinity Western University

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 22

Outline for todayOutline for today

 Static vs. dynamic typing

 Documentation: comments, docstrings, etc.

● Style conventions for identifiers

 Keyboard input: input() and raw_input()

 Basic operators, type conversion

 Formatted output

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 33

Short lab-writeup for Labs 1, 2Short lab-writeup for Labs 1, 2

 Design (“WAD” in “WADES”) (10pts)

● IPO: input – process – output
● Variables needed?
● Math formulas used?

 Code (“E” in “WADES”) (30pts)

● Choose good identifiers
● Docstrings, comments

 Output (“S” in “WADES”) (10pts)

● A couple runs with different inputs

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 44

Static vs. dynamic typingStatic vs. dynamic typing

All variables have a type: int, float, str, bool, ...

Some languages (C, Java, M2): statically typed:

●Must declare the variable type ahead of time
x, y: REAL;
 int numApples;

●Can't change the type
or assign a value of a different type:
x := “Hello, World”; /* won't work! */

But Python is dynamically typed:
x = 5.0
x = True # works in Python

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 55

Declaring vs. initializingDeclaring vs. initializing

 This is only necessary for statically-typed
languages:

● Declare a variable to tell the compiler
the type of the variable:

 VAR numApples : CARDINAL; (* M2 *)

● Its value is undefined until it is initialized:
 BEGIN

● numApples := 5; (* M2 *)

 In a dynamically-typed language like Python,
just initialize the variable:

 numApples = 5 # okay in Python

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 66

DocumentationDocumentation

 Document your thinking at every step,
even the ideas that didn't work!

● Programmer's diary: log of everything

 External documentation: outside the program
● User manual:

 What user input is required

 What the user should expect the program to output

 No details about program internals

 Internal documentation: within the program
● Descriptive variable/module names

● Comments in the code

● Online help for the user

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 77

Internal documentationInternal documentation

 Good variable names: numHashes
● Bad variable names: x, num, i

 Comments: # in Python (to end of line)
● # loop numHashes times

● while (counter < numHashes):

 print “#”, # no newline
 counter = counter + 1

 Online help:
● “Enter 'h' for online help.”

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 88

CommentsComments

 Explain the “why”, not the “what”:

● Bad: x = x + 1 # increment x
● Good: x = x + 1 # do next hashmark

 Keep comments up-to-date!

● Incorrect comments are worse than no
comments

 Comments are no substitute for external
documentation

● Still need a separate design doc,
pseudocode, user manual, etc.

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 99

DocstringsDocstrings

 Python convention is to create a docstring at
the top of every module, function, class, etc.:

● ” ” ” Print a bunch of hashes.

Nellie Hacker, CMPT140
” ” ”
numHashes = input(“How many hashes? ”)
. . .

 Triple-quotes: this is a string, not a comment

 First line is a short summary

 Second line is blank, then detailed description

 Automated Python tools read docstrings to help you
organize your code

● More info: http://www.python.org/dev/peps/pep-0257/

http://www.python.org/dev/peps/pep-0257/

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 1010

Style conventionsStyle conventions

 Not hard-and-fast rules, but flexible conventions
that make code easier to read and understand

 Variable names: numHashes

● Flexible, but I prefer no underscores, and
capitalize each word (“CamelCase”)

● First letter is lowercase

 File/module names: helloworld.py

● Short, all lowercase, no underscores

 Function names: print_hashes()

● lowercase, command predicate, underscores
 More details: http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 1111

Keyboard inputKeyboard input

 Output using print()

 Use input() to get a value
from the user:

● balance = input(“Opening balance? ”)
● The argument is the prompt string

 Note trailing space in the prompt

● Python interprets the user's response as a
Python expression and finds its type

 Input can be any valid Python expression

● Just pressing Enter w/o input gives an
error

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 1212

raw_input() vs. input()raw_input() vs. input()

 How to input a string from the user?

● input() tries to interpret the user's input:
● Too fancy; just want the straight text

 Use raw_input() instead

 Return type is always str

 You can use raw_input() at the end of your
program to wait for the user to press Enter
before the program finishes

● raw_input(“Press Enter to quit.”)

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 1313

ExpressionsExpressions

 An expression is a combination of
● Literals, constants, and variables,

● Using appropriate operations (by type)

12 – 7

numApples * 4

 A few operators we'll look at:
● Binary: + - * / % // **

● Comparison: == < > <= => != <> is

● Boolean: and or not (shortcut)

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 1414

Binary arithmetic operatorsBinary arithmetic operators

 + , –, *: addition, subtraction, multiplication

 : power: 24 == 16

 /: division: 7.0 / 2 == 3.5

● On two ints, returns an int (floor): 7 / 2 == 3

● A note about float arithmetic: 7.2 / 2 ≠ 3.6

 //: floor division

● Same as / for ints: 7 // 2 == 3

● On floats, returns floor of quotient: 7.0 // 2 ==
3.0

 %: modulo (remainder): 8 % 3 == 2

● 8 % 0 => ZeroDivisionError

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 1515

Comparison operatorsComparison operators

 Test for quantitative equality: 2 + 3 == 5

 Test for inequality: 2 + 3 != 4

● Can also use <>

 Comparison: <, >, <= , >=

 Test for identity: is, is not

● (2, 3) == ((2, 3)), but
● (2, 3) is not ((2, 3))

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 1616

Boolean operators: shortcutBoolean operators: shortcut

 Boolean operators: and or not

● In C/C++/Java: && || !

 Python's boolean operators have shortcut
semantics:

● Second operand is only evaluated if
necessary

 (7 / 0) and False => ZeroDivisionError
 False and (7 / 0) == False

● Doesn't raise ZeroDivisionError

 True or (7 / 0) == True
● Same thing

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 1717

Type conversionsType conversions

 Python is dynamically typed, so operators can do
implicit type conversions to their operands:

● 2 (int) + 3.5 (float) == 5.5 (float)

 Plus (+) operator converts 2 (int) to 2.0
(float)

 You can manually convert types:

● int(2.7) == 2

● int(True) == 1

● Better alternative to input():

 ageString = raw_input(“Age? ”)
 age = int(ageString)

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 1818

PrecedencePrecedence

 Of the operators we've learned, the precedence order
from highest (evaluated first) to lowest (evaluated
last) is

● **

● Unary +, -

● *, /, %, //

● Binary +, -

● ==, !=, <>, <, >, <=, >=

● Is, is not

● Not

● And

● or

 Complete precedence rules at
http://docs.python.org/ref/summary.html

http://docs.python.org/ref/summary.html

21 Sep 200921 Sep 2009CMPT140: style, operatorsCMPT140: style, operators 1919

TODOTODO

 Lab1 due Wed/Thu!

● 10pm upload to myCourses
● #40: don't need looping; just run for 3

purchases

 Read ch3 for Wed

 Lab2 posted, due next week Wed/Thu

● Uses selection(if) and/or looping
● We will cover this on Wed
● Short writeup ok

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

