
Control Structures:Control Structures:
if, while, forif, while, for

23 Sep 2009
CMPT140
Dr. Sean Ho
Trinity Western University

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 22

Outline for todayOutline for today

 Formatted output

 abs(), +=, string.capitalize()

 Qualified import

 Selection: if, if..else.., if..elif..else

 Loops: while

 Sentinel variables

 Loop counters

 Using mathematical closed forms instead of
loops

 For loops

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 33

Formatted output: print with %Formatted output: print with %

 The built-in print can accept a format string:
 print “You have %d apples.” % 7

● → “You have 7 apples.”

● It can take a list of arguments:
 print “%d apples and %d oranges.” %

(7, 10)
● → “7 apples and 10 oranges.”

● Format codes:
 %d: integer
 %f: float
 %s: string

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 44

Formatting: %d, %fFormatting: %d, %f

 You can specify the field width:
 print “%3d apples” % 5

● “ 5 apples” (note two leading spaces)

 print “%-3d apples” % 5

● “5 apples” (left-aligned: two trailing spc)

 print “%03d apples” % 5

● “005 apples” (padded with zeros)

 print “%4.1f apples” % 5.273

● “ 5.3 apples”: 4 is the total field width,
including the decimal

● 1 is the number of digits after the decimal

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 55

String concat, repetitionString concat, repetition

 The plus operator (+) is overloaded to work
with strings: concatenation

 “Hello” + “World!” → “HelloWorld!”

● Overloading is when one operator or
function can do different things
depending on the type of its arguments:

 2 + 3 → integer addition
 2 + 3.0 → float addition
 “A” + “B” → string concatenation

 Python also has string repetition:
 “Hi!” * 3 → “Hi!Hi!Hi!”

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 66

String concatenation vs. printString concatenation vs. print

 print converts each of its arguments to a string,
and puts spaces between them:

● print “Hello”, “dear”, “World!”
 → Hello dear World!

 String concatenation doesn't insert spaces:

● print “Hello” + “dear” + “World!”
 → HellodearWorld!

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 77

A few misc nifty tricksA few misc nifty tricks

 Absolute value built-in: abs(-5.0) → 5.0

 Increment/decrement, etc:

● count += 1 # count = count + 1
● numApples *= 2 # nA = nA * 2
● No builtin “++” operator as in C++/Java

 Turn strings into all-caps:

● import string
● string.upper(“Hello”) # “HELLO”

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 88

Qualified importQualified import

 The usual way to import a library:

import string

string.capitalize(“Hello!”)

 Import individual functions from a library:

from string import capitalize

capitalize(“Hello!”)

 Or import an entire library (don't do this):

from string import *

capitalize(“Hello!”)

 We'll learn later about namespaces

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 99

Program StructureProgram Structure

 Five basic program structure/flow abstractions:

● Sequence (newline)
● Selection (if ... elif ... else)
● Repetition/loops (while, for)
● Composition (subroutines)
● Parallelism

 Today covers the first three program structure
abstractions

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 1010

Statement sequencesStatement sequences

 A sequence of statements is executed in order:
● Successive statements are not executed until the

preceding statement is completed

print “Running really_slow_function() ...”

really_slow_function()

print “done!”

 Separate statements are on separate lines

● Whitespace and newlines matter in Python
● In most other languages, semicolon (;)

separates statements, and newlines
don't matter

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 1111

Simple selection: if Simple selection: if

if condition :

statement sequence

 Indentation (tab) indicates what's part of the
statement sequence

 Condition is a Boolean expression evaluating to
either True or False

 Conditional execution: if condition evaluates to
False, then the statement sequence is
skipped over and not executed

condition

sequence

True

False

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 1212

Example: ifExample: if

if numApples > 12:

print “Okay, that's waay too many apples!”

print “Let's eat some apples!”

 Observe indentation (it matters in Python!)

 Parentheses () not needed around condition

● But if condition is complex, parentheses
may be useful to clarify precedence:

● if (numApples > 5) and (numApples < 12)

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 1313

Branching: if ... else ...Branching: if ... else ...

if condition :

statement sequence

else :

statement sequence

 Only one of the two
statement sequences
is executed

condition

“else”
sequence

“if”
sequence

True False

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 1414

Example: if ... else ...Example: if ... else ...

if numFriends > 0:

applesPerFriend = numApples / numFriends

else:

print “Awww, you need some friends!”

 Would the division work if numFriends == 0?

 Will this code generate an error
if numFriends == 0?

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 1515

Branching: if ... elif ... else ...Branching: if ... elif ... else ...

if condition :

statement sequence

elif 2nd condition :

statement sequence

else :

statement sequence

 Only one of the
statement sequences
is executed

condition

“elif”
sequence

“if”
sequenceTrue

False

True

False

2nd condition

“else”
sequence

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 1616

Example: if ... elif ... else ...Example: if ... elif ... else ...

if numFriends <= 0:

print “Awww, you need some friends!”

elif numFriends > 30:

print “Wow, that's a lot of friends!”

else:

applesPerFriend = numApples / numFriends

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 1717

while loopswhile loops

while condition :

statement sequence

 As with “if”, condition is a Boolean expression:

● Evaluated once before entering the loop,
● Re-evaluated each time through the loop:

 Top-of-loop testing

 Statement sequence is run only if condition
evaluates to True

condition

sequence

False

True

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 1818

Sentinel variablesSentinel variables

 A sentinel variable controls whether a loop
continues: the loop only exits when the
sentinel variable has a certain value

answer = 0

while answer != 4:
answer = input(“Math quiz: 2 + 2 = ”)

● Sentinel variable is answer
● Sentinel value is 4

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 1919

Counting loopsCounting loops

 A common form of loop uses a counter:

counter = 1

while counter <= max:
sum = sum + counter
counter = counter + 1

 What if we need to prematurely exit this loop?

counter = 1

while counter <= max:

if need_to_exit_early():
counter = max + 1

...

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 2020

Closed forms instead of loopsClosed forms instead of loops

 Sometimes with a bit of thought we can
replace a loop with a single mathematical
equation

● “Work smarter, not harder”

 Example: Add the first n integers >0

sum = 0

counter = 1

while counter <= n:

sum = sum + counter
counter = counter + 1

print “Sum is %d.” % sum

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 2121

Closed form solutionClosed form solution

 But observe the pattern:

● 1 + 2 + 3 + ... + (n-2) + (n-1) + n

 Each pair makes n+1; there are n/2 pairs:

 Closed form solution:

sum = n * (n+1) / 2

 (If n is type int, does the / cause problems?)

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 2222

while loops: continuewhile loops: continue

 You can prematurely go to the next iteration of
a while loop by using continue:

 counter = 0
 while counter < 5:

● counter += 1
● if counter == 3:

● continue
● print counter,

● Output:
 1 2 4 5

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 2323

while loops: breakwhile loops: break

 You can quit a while loop early by using break:
 counter = 0
 while counter < 5:

● counter += 1
● if counter == 3:

● break
● print counter,

 Output:
 1 2

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 2424

while loops: elsewhile loops: else

 The optional else clause of a while loop is
executed when the loop condition is False:

 counter = 0
 while counter < 5:

● counter += 1
● print counter,

 else:
● print “Loop is done!”

 Output:
 1 2 3 4 5 Loop is done!

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 2525

while loops: break skips elsewhile loops: break skips else

 If the loop is exited via break, the else clause is
not performed:

 counter = 0
 while counter < 5:

● counter += 1
● if counter == 3:

● break
● print counter,

 else:
● print “Loop is done!”

 Output: 1 2

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 2626

Common errors with loopsCommon errors with loops

 Print squares from 12 up to 102:
 counter = 0
 while counter < 10:

● print counter*counter,
 What's wrong with this loop?

● counter is never incremented!

 → Always make sure progress is being made in
the loop!

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 2727

Common errors with loopsCommon errors with loops

 Count from 1 up to 10 by twos:
 counter = 1
 while counter != 10:

● print counter,
● counter += 2

 What's wrong with this loop? How to fix it?
 counter = 1
 while counter < 10:

● print counter,
● counter += 2

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 2828

Common errors with loopsCommon errors with loops

 Count from 1.1 up to 2.0 in increments of 0.1:
 counter = 1.1
 while counter != 2.0:

● print counter,
● counter += 0.1

 Seems like it should work, but it might not due
to inaccuracies in floating-point arithmetic

 counter = 1.1
 while counter < 2.0:

● print counter,
● counter += 0.1

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 2929

for loopsfor loops

 Many loops do counting: the for loop is an easy
construct that prevents many of these errors

 Syntax:
 for target in expression list :

● Statement sequence
 Example:

 for counter in (0, 1, 2, 3, 4):
● print counter,

● Output: 0 1 2 3 4

 for loops can also take an else sequence, like
while loops

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 3030

range()range()

 The built-in function range() produces a list
suitable for use in a for loop:

● range(10) → [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

● Note 0-based, and omits end of range

 Specify starting value:
● range(1, 10) → [1, 2, 3, 4, 5, 6, 7, 8, 9]

 Specify increment:
● range(10, 0, -2) → [10, 8, 6, 4, 2]

 Technically, range() returns a list (mutable), rather
than a tuple (immutable). More on this later.

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 3131

for loop examplesfor loop examples

 Print squares from 12 up to 102:
● for counter in range(1, 11):

 print counter * counter,

 for loops can iterate over other lists:
● for appleVariety in (“Fuji”, “Braeburn”,

“Gala”):

 print “I like”, appleVariety, “apples!”

 Technically, the for loop uses an iterator to get the
next item to loop over. Iterators are beyond the
scope of CMPT140.

23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 3232

TODOTODO

 Lab1 due Wed/Thu!

● 10pm upload to myCourses
● #40: don't need looping; just run for 3

purchases

 Read ch3

 HW2 posted, due next Mon (ch2,3)

 Lab2 posted, due next week Wed/Thu

● Uses selection(if) and/or looping
● Short writeup ok

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

