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Outline for todayOutline for today

 Formatted output

 abs(), +=, string.capitalize()

 Qualified import

 Selection: if, if..else.., if..elif..else

 Loops: while

 Sentinel variables

 Loop counters

 Using mathematical closed forms instead of 
loops

 For loops
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Formatted output: print with %Formatted output: print with %

 The built-in print can accept a format string:
 print “You have %d apples.” % 7

● → “You have 7 apples.”

● It can take a list of arguments:
 print “%d apples and %d oranges.” % 

(7, 10)
● → “7 apples and 10 oranges.”

● Format codes:
 %d: integer
 %f: float
 %s: string



23 Sep 200923 Sep 2009CMPT 140: if, while, forCMPT 140: if, while, for 44

Formatting: %d, %fFormatting: %d, %f

 You can specify the field width:
 print “%3d apples” % 5

● “  5 apples” (note two leading spaces)

 print “%-3d apples” % 5

● “5   apples” (left-aligned: two trailing spc)

 print “%03d apples” % 5

● “005 apples” (padded with zeros)

 print “%4.1f apples” % 5.273

● “ 5.3 apples”: 4 is the total field width, 
including the decimal

● 1 is the number of digits after the decimal
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String concat, repetitionString concat, repetition

 The plus operator (+) is overloaded to work 
with strings: concatenation

 “Hello” + “World!” → “HelloWorld!”

● Overloading is when one operator or 
function can do different things 
depending on the type of its arguments:

 2 + 3 → integer addition
 2 + 3.0 → float addition
 “A” + “B” → string concatenation

 Python also has string repetition:
 “Hi!” * 3 → “Hi!Hi!Hi!”
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String concatenation vs. printString concatenation vs. print

 print converts each of its arguments to a string, 
and puts spaces between them:

● print “Hello”, “dear”, “World!”
 → Hello dear World!

 String concatenation doesn't insert spaces:

● print “Hello” + “dear” + “World!”
 → HellodearWorld!
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A few misc nifty tricksA few misc nifty tricks

 Absolute value built-in: abs(-5.0) → 5.0

 Increment/decrement, etc:

● count += 1 # count = count + 1
● numApples *= 2 # nA = nA * 2
● No builtin “++” operator as in C++/Java

 Turn strings into all-caps:

● import string
● string.upper(“Hello”) # “HELLO”
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Qualified importQualified import

 The usual way to import a library:

import string

string.capitalize(“Hello!”)

 Import individual functions from a library:

from string import capitalize

capitalize(“Hello!”)

 Or import an entire library (don't do this):

from string import *

capitalize(“Hello!”)

 We'll learn later about namespaces
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Program StructureProgram Structure

 Five basic program structure/flow abstractions:

● Sequence (newline)
● Selection (if ... elif ... else)
● Repetition/loops (while, for)
● Composition (subroutines)
● Parallelism

 Today covers the first three program structure 
abstractions
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Statement sequencesStatement sequences

 A sequence of statements is executed in order:
● Successive statements are not executed until the 

preceding statement is completed

print “Running really_slow_function() ...”

really_slow_function()

print “done!”

 Separate statements are on separate lines

● Whitespace and newlines matter in Python
● In most other languages, semicolon (;) 

separates statements, and newlines 
don't matter
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Simple selection: if Simple selection: if 

if condition :

statement sequence

 Indentation (tab) indicates what's part of the 
statement sequence

 Condition is a Boolean expression evaluating to 
either True or False

 Conditional execution: if condition evaluates to 
False, then the statement sequence is 
skipped over and not executed

condition

sequence

True

False
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Example: ifExample: if

if numApples > 12:

print “Okay, that's waay too many apples!”

print “Let's eat some apples!”

 Observe indentation (it matters in Python!)

 Parentheses () not needed around condition

● But if condition is complex, parentheses 
may be useful to clarify precedence:

● if (numApples > 5) and (numApples < 12)
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Branching: if ... else ...Branching: if ... else ...

if condition :

statement sequence

else :

statement sequence

 Only one of the two 
statement sequences 
is executed

condition

“else”
sequence

“if”
sequence

True False
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Example: if ... else ...Example: if ... else ...

if numFriends > 0:

applesPerFriend = numApples / numFriends

else:

print “Awww, you need some friends!”

 Would the division work if numFriends == 0?

 Will this code generate an error
if numFriends == 0?
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Branching: if ... elif ... else ...Branching: if ... elif ... else ...

if condition :

statement sequence

elif 2nd condition :

statement sequence

else :

statement sequence

 Only one of the 
statement sequences 
is executed

condition

“elif”
sequence

“if”
sequenceTrue

False

True

False

2nd condition

“else”
sequence
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Example: if ... elif ... else ...Example: if ... elif ... else ...

if numFriends <= 0:

print “Awww, you need some friends!”

elif numFriends > 30:

print “Wow, that's a lot of friends!”

else:

applesPerFriend = numApples / numFriends
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while loopswhile loops

while condition :

statement sequence

 As with “if”, condition is a Boolean expression:

● Evaluated once before entering the loop,
● Re-evaluated each time through the loop:

 Top-of-loop testing

 Statement sequence is run only if condition 
evaluates to True

condition

sequence

False

True
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Sentinel variablesSentinel variables

 A sentinel variable controls whether a loop 
continues: the loop only exits when the 
sentinel variable has a certain value

answer = 0

while answer != 4:
answer = input(“Math quiz: 2 + 2 = ”)

● Sentinel variable is answer
● Sentinel value is 4
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Counting loopsCounting loops

 A common form of loop uses a counter:

counter = 1

while counter <= max:
sum = sum + counter
counter = counter + 1

 What if we need to prematurely exit this loop?

counter = 1

while counter <= max:

if need_to_exit_early():
counter = max + 1

...
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Closed forms instead of loopsClosed forms instead of loops

 Sometimes with a bit of thought we can 
replace a loop with a single mathematical 
equation

● “Work smarter, not harder”

 Example: Add the first n integers >0

sum = 0

counter = 1

while counter <= n:

sum = sum + counter
counter = counter + 1

print “Sum is %d.” % sum
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Closed form solutionClosed form solution

 But observe the pattern:

● 1 + 2 + 3 + ...   + (n-2) + (n-1) + n

 Each pair makes n+1; there are n/2 pairs:

 Closed form solution:

sum = n * (n+1) / 2

 (If n is type int, does the / cause problems?)
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while loops: continuewhile loops: continue

 You can prematurely go to the next iteration of 
a while loop by using continue:

 counter = 0
 while counter < 5:

● counter += 1
● if counter == 3:

● continue
● print counter,

● Output:
 1 2 4 5
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while loops: breakwhile loops: break

 You can quit a while loop early by using break:
 counter = 0
 while counter < 5:

● counter += 1
● if counter == 3:

● break
● print counter,

 Output:
 1 2
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while loops: elsewhile loops: else

 The optional else clause of a while loop is 
executed when the loop condition is False:

 counter = 0
 while counter < 5:

● counter += 1
● print counter,

 else:
● print “Loop is done!”

 Output:
 1 2 3 4 5 Loop is done!
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while loops: break skips elsewhile loops: break skips else

 If the loop is exited via break, the else clause is 
not performed:

 counter = 0
 while counter < 5:

● counter += 1
● if counter == 3:

● break
● print counter,

 else:
● print “Loop is done!”

 Output: 1 2
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Common errors with loopsCommon errors with loops

 Print squares from 12 up to 102:
 counter = 0
 while counter < 10:

● print counter*counter,
 What's wrong with this loop?

● counter is never incremented!

 → Always make sure progress is being made in 
the loop!
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Common errors with loopsCommon errors with loops

 Count from 1 up to 10 by twos:
 counter = 1
 while counter != 10:

● print counter,
● counter += 2

 What's wrong with this loop?  How to fix it?
 counter = 1
 while counter < 10:

● print counter,
● counter += 2
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Common errors with loopsCommon errors with loops

 Count from 1.1 up to 2.0 in increments of 0.1:
 counter = 1.1
 while counter != 2.0:

● print counter,
● counter += 0.1

 Seems like it should work, but it might not due 
to inaccuracies in floating-point arithmetic

 counter = 1.1
 while counter < 2.0:

● print counter,
● counter += 0.1
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for loopsfor loops

 Many loops do counting: the for loop is an easy 
construct that prevents many of these errors

 Syntax:
 for target in expression list :

● Statement sequence
 Example:

 for counter in (0, 1, 2, 3, 4):
● print counter,

● Output: 0 1 2 3 4

 for loops can also take an else sequence, like 
while loops
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range()range()

 The built-in function range() produces a list 
suitable for use in a for loop:

● range(10) → [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

● Note 0-based, and omits end of range

 Specify starting value:
● range(1, 10) → [1, 2, 3, 4, 5, 6, 7, 8, 9]

 Specify increment:
● range(10, 0, -2) → [10, 8, 6, 4, 2]

 Technically, range() returns a list (mutable), rather 
than a tuple (immutable).  More on this later.
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for loop examplesfor loop examples

 Print squares from 12 up to 102:
● for counter in range(1, 11):

 print counter * counter,

 for loops can iterate over other lists:
● for appleVariety in (“Fuji”, “Braeburn”, 

“Gala”):

 print “I like”, appleVariety, “apples!”

 Technically, the for loop uses an iterator to get the 
next item to loop over.  Iterators are beyond the 
scope of CMPT140.
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TODOTODO

 Lab1 due Wed/Thu!

● 10pm upload to myCourses
● #40: don't need looping; just run for 3 

purchases

 Read ch3

 HW2 posted, due next Mon (ch2,3)

 Lab2 posted, due next week Wed/Thu

● Uses selection(if) and/or looping
● Short writeup ok
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