
C Arrays and Python ListsC Arrays and Python Lists

2 Oct 2009
CMPT140
Dr. Sean Ho
Trinity Western University

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 22

What's on todayWhat's on today

 Type hierarchy, M2/C vs. Python

● Enumeration types

 Python lists vs. M2/C arrays

 Lists as function parameters

 Multidimensional arrays/lists

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 33

M2 type hierarchy (partial)M2 type hierarchy (partial)

 Atomic types

● Scalar types

 Real types (REAL, LONGREAL)

 Ordinal types (CHAR)
● Whole number types (INTEGER, CARDINAL)
● Enumerations (§5.2.1) (BOOLEAN)
● Subranges (§5.2.2)

 Structured (aggregate) types

● Arrays (§5.3)

 Strings (§5.3.1)

● Sets (§9.2-9.6)

● Records (§9.7-9.12)

 Also can have user-defined types

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 44

Python type hierarchy (partial)Python type hierarchy (partial)

 Atomic types

● Numbers

 Integers (int, long, bool): 5, 500000L, True

 Reals (float) (only double-precision): 5.0

 Complex numbers (complex): 5+2j

 Container (aggregate) types

● Immutable sequences

 Strings (str): "Hello"

 Tuples (tuple): (2, 5.0, "hi")

● Mutable sequences

 Lists (list): [2, 5.0, "hi"]

● Mappings

 Dictionaries (dict): {"apple": 5, "orange": 8}

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 55

Enumeration types in M2 / CEnumeration types in M2 / C

TYPE
DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

VAR
today : DayName;

BEGIN
today := Mon;

 We could have used CARDINALs instead
(indeed, the underlying implementation does)

● But the logical semantic of today's type is a
DayName type, not a CARDINAL

 Can be thought of as Sun=0, Mon=1, Tue=2, ...

 No explicit enumeration scheme in Python

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 66

C ArraysC Arrays

 Most languages (C, M2, Java, etc.) have arrays:
● C: float myWages[5] = {0., 25.75, 0., 0., 0.};

● M2: myWages: ARRAY [0..4] OF REAL;

 Compound data type, sequential storage

● Fixed length: must declare length (5)
● Uniform type: same type for all elements
● Static type: can't change type of elements

 Indexing: myWages[2] = 15.85;

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 77

Python ListsPython Lists

 Python doesn't have a built-in type exactly like
arrays, but it does have lists:

nelliesWages = [0.0, 25.75, 0.0, 0.0, 0.0]

nelliesWages[1] # returns 25.75

 Under the covers, Python often implements lists
using arrays, but lists are more powerful:

● Can change length dynamically
● Can store items of different type
● Can delete/insert items mid-list

 For now, we'll treat Python lists as arrays

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 88

Using listsUsing lists

 We know one way to generate a list: range()
range(10) # returns [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 Or create directly in square brackets:
myApples = ["Fuji", "Gala", "Red Delicious"]

 We can iterate through a list:
for idx in range(len(myApples)):

print "I like", myApples[idx], "apples!"

 Even easier:
for apple in myApples:

print "I like", apple, "apples!"

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 99

Lists as parametersLists as parameters

def average(vec):

"""Return the average of the vector's values.
pre: vec should have scalar values (float, int)

and not be empty.
"""
sum = 0
for elt in vec:

sum += elt
return sum / len(vec)

myList = range(9)

print average(myList) # prints 4

 What happens when we pass an empty array? An
atomic value?

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 1010

Type-checking list parametersType-checking list parameters

 Since Python is dynamically-typed, the function
definition doesn't specify what type the
parameter is, or even that it needs to be a list

● Easy way out: state expected type in
precondition

● Or do type checking in the function:
if type(vec) != type([]):

print "Need to pass this function a list!"
return

● May also want to check for empty lists:
if len(vec) == 0:

 for, len(), etc. don't work on atomic types

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 1111

Array parameters in M2/C/etc.Array parameters in M2/C/etc.

 In statically-typed languages like M2, C, etc.,
the procedure declaration needs to specify that
the parameter is an array, and the type of its
elements:

● M2:
PROCEDURE Average(myList: ARRAY of REAL) :

REAL;

● C:
float average(float* myList, unsigned int len) {

 In M2, HIGH(myList) gets the length

 In C, length is unknown (pass in separately)

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 1212

Multidimensional arraysMultidimensional arrays

 Multidimensional arrays are simply arrays of
arrays:

myMatrix = [[0.0, 0.1, 0.2, 0.3],

[1.0, 1.1, 1.2, 1.3],

[2,0, 2.1, 2.2, 2.3]]

 Accessing:
myMatrix[1][2] = 1.2

 Row-major convention:

0.0 0.1 0.2 0.3
1.0 1.1 1.2 1.3
2.0 2.1 2.2 2.3 

myMatrix[1]

2 Oct 20092 Oct 2009CMPT140: arrays and listsCMPT140: arrays and lists 1313

Iterating in multidim arraysIterating in multidim arrays

def matrix_average(matrix):

"""Return the average value from the 2D
matrix.

Pre: matrix must be a non-empty 2D array of
scalar values."""

sum = 0
num_entries = 0
for row in range(len(matrix)):

for col in range(len(matrix[row])):
sum += matrix[row][col]

num_entries += len(matrix[row])
return sum / num_entries

 What if rows are not all equal length?

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

