
Applications:Applications:
Sieve of Eratosthenes,Sieve of Eratosthenes,
RecursionRecursion

14 Oct 2009
CMPT140
Dr. Sean Ho
Trinity Western University



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 22

Sieve of EratosthenesSieve of Eratosthenes

 Problem: list all the prime numbers between 2 
and some given big number.

● You had a homework that was similar: test if 
a given number is prime, and list its factors

● How did you solve that?
 Procedure is_prime() (pseudocode):
Iterate for factor in 2 .. sqrt(n):

If (n % factor == 0), then
We've found a factor!

 But this is wasteful: really only need to test 
prime numbers for potential factors



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 33

Listing all primesListing all primes

 We could tackle this problem by repeatedly 
calling is_prime() on every number in turn:

for num in range(2, max):

if is_prime(num) ...

 But this could be really slow if max is big

 Is there a smarter way to eliminate non-prime 
(composite) numbers?



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 44

Sieve of EratosthenesSieve of Eratosthenes

 The sieve works by a process of elimination: we 
eliminate all the non-primes by turn:

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 55

Prime sieve: pseudocodePrime sieve: pseudocode

1) Create an array of booleans and set them all to 
true at first. (true = prime)

2) Set array element 1 to false. Now 2 is prime.

3) Set the values whose index in the array is a 
multiple of the last prime found to false.

4) The next index where the array holds the value 
true is the next prime.

5) Repeat steps 3 and 4 until the last prime found 
is greater than the square root of the largest 
number in the array.



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 66

Prime sieve: Python codePrime sieve: Python code

"""Find all primes up to a given number, using 
Eratosthenes' prime sieve."""

import math # sqrt

size = input("Find all primes up to: ")

# Initialize: all numbers except 0, 1 are prime

primeFlags = range(size+1) # so pF[size] exists

for num in range(size+1):

primeFlags[num] = True

primeFlags[0] = False

primeFlags[1] = False



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 77

Prime sieve: Python code (p.2)Prime sieve: Python code (p.2)

# Computation: eliminate all non-primes

for num in range(2, int(math.sqrt(size))+1):

if primeFlags[num]: # got a prime

# Eliminate its multiples
for multiple in range(num**2, size+1, num):

primeFlags[multiple] = False

# Output

print "Your primes, sir/madam:",

for num in range(2, size+1):

if primeFlags[num]:

print num,
http://twu.seanho.com/python/primesieve.py

http://twu.seanho.com/python/primesieve.py


14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 88

RecursionRecursion

 Recursion is when a function invokes itself

 Classic example: factorial (!)

● n! = n(n-1)(n-2)(n-3) ... (3)(2)(1)
● 0! = 1

 Compute recursively:

● Inductive step: n! = n*(n-1)!
● Base case: 0! = 1

 Inductive step: assume (n-1)! is calculated 
correctly; then we can find n!

 Base case is needed to tell us where to start



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 99

factorial() in Pythonfactorial() in Python

def factorial(n):

"""Calculate n!.  n should be a positive 
integer."""

if n == 0: # base case

return 1
else: # inductive step

return n * factorial(n-1)

 Progress is made each time: factorial(n-1)

 Base case prevents infinite recursion

 What about factorial(-1)?  Or factorial(2.5)?



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 1010

The call stackThe call stack

 When a program is running, an area 
of memory is set aside to store local 
variables, the state of the program, 
etc.

 When a procedure is invoked, the 
calling context is saved, and a new 
chunk of memory is allocated for the 
procedure to use: its stack frame

 When the procedure finishes, its 
frame is released and control goes 
back to the calling context

 The stack pointer keeps track of 
what frame is currently running

__main__

calc_volume()

math.sin()

stack
pointer



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 1111

Call stack for recursionCall stack for recursion

def factorial(n):

"""Compute the factorial of a 
positive integer."""

if n == 0:

return 1
else:

return n*factorial(n-1)

 If there were any local variables, 
each frame would have its own 
instance of the local variables

 When an error (exception) 
happens, IDLE shows a 
backtrace: part of the call stack __main__

factorial(3)

factorial(2)

stack
pointer

factorial(1)

factorial(0)



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 1212

Recursion example: FibonacciRecursion example: Fibonacci

 Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34,..

● Each number is the sum of the two previous
def fibonacci(n):

"""Compute the n-th Fibonnaci number.

pre: n should be a positive integer.

"""

if n == 0 or n == 1: # base case

return 1
else: # inductive step

return fibonacci(n-2) + fibonacci(n-1)
● Note: very inefficient algorithm!



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 1313

Computing & Society PaperComputing & Society Paper

 Computing scientist as Godly Christian Leader:
● Not just knowledge about tools, but

● Wisdom of how to use tools

 To serve others and
 To give glory to God

 Write a short essay on a topic of your choosing 
about computers and society:

 ~ 5 pages typed double-spaced 12pt 1in margins
 Submit half-page topic by Fri 6Nov
 Paper due near end of semester (Wed 2Dec)

● Electronic submission (email, eCourses)



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 1414

Sample paper topicsSample paper topics

 Censorship and free speech

● Pornography, gambling, hate groups, etc.

 Violence in video games (Columbine etc.)

 Privacy: online banking, ID theft, etc.

 Blogs: effect on politics, social interaction, etc.

 File sharing: Napster, Gnutella, etc.

 Artificial intelligence: the nature of sentience

 Online dating (e.g. eHarmony): pros/cons

 Equity of access / rural digital divide

● ...... or come up with your own topic!



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 1515

Tips for essay writingTips for essay writing

 Your essay should be a position paper:
● Topic should have at least two sides (e.g. pro/con)

● You should state (in the introductory paragraph) 
what your position is (thesis)

● You should have at least 2-3 points, each,
both for and against your position

 It is not necessary to rebut every point that 
contradicts your position:

 Be honest about faults/limitations of your thesis
● Summary intro/conclusion paragraphs

● Proper English (spelling, grammar) is important!



14 Oct 200914 Oct 2009CMPT140: Sieve of EratosthenesCMPT140: Sieve of Eratosthenes 1616

TODOTODO

 HW3 due Mon

● Ch3 and mostly Ch4

 Lab3 due next week Wed/Thu

● Full lab write-up required!
Use “Lab Template” on course webpage


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

