
File I/OFile I/O

21 Oct 2009
CMPT140
Dr. Sean Ho
Trinity Western University

21 Oct 2009CMPT140: file I/O 2

File input in PythonFile input in Python

 Open a file for reading:
myFile = open('filename.txt')

● myFile is a file object (file handle)

● Filename is relative to current directory of IDLE

 Specify absolute pathname: 'z:\filename.txt'

 Read a line from the file:
myFile.readline()

● Returns a string, including the newline

● Returns empty string when it hits the end-of-file

 Close the file when you're done:
myFile.close()

Also see
myFile.readlines()

21 Oct 2009CMPT140: file I/O 3

Seeking in filesSeeking in files

 Files are just streams of bytes

 Python maintains a file pointer: current position

 Get the current position as an index:

myFile.tell() # returns a long int

 Manually set the position of the file pointer:

myFile.seek(0) # go to start of file

myFile.seek(-128, 1) # rewind 128 bytes

 Read a certain number of bytes from the file:

myfile.read(256) # read exactly 256 bytes

myfile.read() # read whole file (yipes!)

● Treats newlines like any other character

21 Oct 2009CMPT140: file I/O 4

File output in PythonFile output in Python

 Open a file for writing:

myFile = open('file.txt', 'w')
● 'w' is the file mode (see next slide)

 Write text at the current position:

myFile.write('Hello World!\n')
● Newlines need to be explicit

 Writes are sometimes buffered before commit

●Force a flush: myFile.flush()

21 Oct 2009CMPT140: file I/O 5

File modesFile modes

 Files may be opened in various modes:
● 'r': read input from file (default)

● 'w': write output to new file
(if the file exists, it is cleared first)

● 'a': append output to end of existing file
(if file doesn't exist, it is created)

● 'r+': both read and write to file
(writing only overwrites existing bytes,
will not insert new bytes in the middle of the file)

 On Windows, text I/O performs mangling of end-of-line
characters; use 'b' (e.g., 'rb', 'rw') to prevent that for
binary data

21 Oct 2009CMPT140: file I/O 6

Writing out variables in PythonWriting out variables in Python

 write() only accepts strings:

numApples = 15

myFile.write(numApples) # error

 str() formats a variable for human readability:

myFile.write(str(numApples)) # okay

 Or we can use a format string:

myFile.write('I have %d apples.\n' %
numApples)

21 Oct 2009CMPT140: file I/O 7

repr() and picklingrepr() and pickling

 How do we represent more complex types
(e.g., lists) as strings?

 repr() gets a string representation suitable for
re-reading by Python:

myFile.write(repr(numApples))

●Compare with str() (for human readability)

 A more general framework for file I/O of objects
is Python's pickle library

●Serialize an object for a stream
 pickle.dump(obj, file) and obj=pickle.load(file)

21 Oct 2009CMPT140: file I/O 8

I/O channelsI/O channels

 Abstractly, a stream of input comes
over a channel from a source

●e.g., source can be keyboard, file, program,...

 A stream is output over a channel to a sink

●e.g., sink can be screen, file, program, etc.

 I/O channels (file descriptors, file handles) can
be opened in one of three modes:

●Read, write, and read/write

 Default: source is keyboard, sink is screen

 Can redirect channels to other source/sink

21 Oct 2009CMPT140: file I/O 9

Standard I/O channelsStandard I/O channels

 The standard I/O channels are already open:

 Standard Input: sys.stdin
● Usually the keyboard

 Standard Output: sys.stdout
● Usually the screen

 But often gets redirected to a file

 Standard Error: sys.stderr
● Usually also the screen

 We've already used sys.stdout.write()

 Alternative to raw_input(): sys.stdin.readline()

21 Oct 2009CMPT140: file I/O 10

Redirecting standard I/ORedirecting standard I/O

 You can redirect the standard I/O channels just
by reassigning them:

 Make print go to a file:

old_stdout = sys.stdout # save stdout

sys.stdout = open('log.txt', 'w') # reassign

print 'Hello!' # goes to file

sys.stdout.close() # close file

sys.stdout = old_stdout # restore stdout

21 Oct 2009CMPT140: file I/O 11

For more informationFor more information

 Python Tutorial ch7 on I/O:
● http://docs.python.org/tutorial/inputoutput.html

 Python I/O Library reference:
● http://docs.python.org/lib/bltin-file-objects.html

 Python pickle library reference:
● http://docs.python.org/library/pickle.html

http://docs.python.org/tutorial/inputoutput.html
http://docs.python.org/lib/bltin-file-objects.html
http://docs.python.org/library/pickle.html

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

