
ExceptionsExceptions

2 Nov 2009
CMPT140
Dr. Sean Ho
Trinity Western University

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 22

Options for error handlingOptions for error handling

 Use a combination of these:

● Ask the user to be nice:
 User manual, precondition comments, prompts

● Print an error message to screen
● Set a result flag:

 e.g., return False upon error

● Panic and die: sys.exit()
● Raise an exception: ZeroDivisionError

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 33

ExceptionsExceptions

 Exceptions are a way of terminating execution
of the current context

 When an exception is raised (thrown),

● execution of the current procedure stops, and
● Control jumps to the nearest exception

handler (catches the exception)

 The exception handler can cleanup

 Execution then continues after that block

 If the exception reaches outermost level, an
error message is automatically generated

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 44

try / excepttry / except

 If an exception is raised within a try block,

 Execution of the block terminates and control
jumps to the except clause:

try:
while True:

numer = input('Numerator: ')
denom = input('Denominator: ')
print '%d / %d = %d' % (numer, denom, numer /

denom)

except:
print 'Oops!'

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 55

Catching specific exceptionsCatching specific exceptions

 Don't just catch all exceptions!

● May hide a genuine error, hard to debug

 Catch only specific exceptions we anticipate:

try:
while True:

numer = input('Numerator: ')
denom = input('Denominator: ')
print '%d / %d = %d' % (numer, denom, numer /

denom)

except ZeroDivisionError:
print 'Oops! Divide by zero!'

 Any other exception falls through to the next
exception handler

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 66

Handling exceptionsHandling exceptions

 The standard math.sqrt() raises ValueError on a
negative argument:

 from math import sqrt
 sqrt(-1) # ValueError

 We can handle this:
 try:

● num = input('Find sqrt of: ')
● result = sqrt(num)
● print 'The square root is', result

 except ValueError:
● print "Can't take square root of", num

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 77

Raising exceptionsRaising exceptions

 We can force exceptions to be raised:

 try:
● while True:

● if input('Guess a number: ') == 5:
● raise ZeroDivisionError

 except ZeroDivisionError:
● print 'You got it!'

 Within a handler, can re-raise the current exception:

 try:
● raise ZeroDivisionError

 except ZeroDivisionError:
● print 'oops, divided by zero!'
● raise # raises ZeroDivisionError

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 88

'else' clauses for exceptions'else' clauses for exceptions

 The optional else clause is executed only if the
try block completes without throwing any
exceptions:

 try:
● for tries in range(3):

● if input('Guess a number: ') == 5:
● raise ZeroDivisionError

 except ZeroDivisionError:
● print 'You got it!'

 else:
● print 'Too bad, you ran out of tries!'

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 99

'finally' clauses for exceptions'finally' clauses for exceptions

 The optional finally clause is always executed
before leaving the section, whether an
exception happened or not.

 try:
● for tries in range(3):

● if input('Guess a number: ') == 5:
● raise ZeroDivisionError

 except ZeroDivisionError:
● print 'You got it!'

 else:
● print 'Too bad, you ran out of tries!'

 finally:
● print 'Bye!'

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1010

Example: robust inputExample: robust input

while True:

try:
userIn = int(input(“Num of people? ”))

except (SyntaxError, NameError):
print “Please enter a number!”

except TypeError:
print “Enter just an integer, thanks!”

except KeyboardInterrupt:
print “OK, you want to quit!”
break

else:
break

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1111

Using exceptions: functionsUsing exceptions: functions

 Exceptions are an elegant way for functions to
indicate errors:

● Invalid input
 Parameters don't satisfy pre-conditions

● Error during execution (runtime error)
 Computed a bad value, can't continue

 It's good custom to specify in the docstring
what exceptions your function might raise

 Programs that call your function may wrap it in
a try/except block to handle your errors

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1212

Example: discriminantExample: discriminant

def discrim(a, b, c):
“””Find discriminant of a x**2 + b x + c = 0.
Pre: a, b, c are all floats or ints.
Post: returns sqrt(b**2 – 4 a c), if it exists.
Exceptions: raises ValueError if discriminant

doesn't exist.”””
from math import sqrt
return sqrt(b**2 – 4.0*a*c)

try:
d = discrim(2, 1, 3)

except ValueError:
print “No real roots!”

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1313

Auxiliary data with exceptionsAuxiliary data with exceptions

 Catch an exception and assign it to a variable:

try:
raise Exception('apples', 'oranges')

except Exception as exc:
print exc.args

 Here, exc is assigned to the exception object

 Auxiliary data (list of arguments) are passed
together with the exception: get it with .args

 Use this to specify additional info about the
error: perhaps some explanatory text

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1414

Example: opening filesExample: opening files

 When we open a file for reading or writing,
several things could go wrong:

● Try to read a non-existent file

● No permissions to read/write file

● Try to open a directory / non-file

 All of these errors produce an IOError

 Auxiliary info: error number and text description

try:
provFile = open(“prov.txt”)

except IOError as (errnum, errtxt):
print errtxt

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1515

Even better way to open filesEven better way to open files

 Python has a with clause:the object itself knows
how to clean itself up if any errors happen

 Use with files, so that the file will close itself:

with open(“prov.txt”) as provFile:
now provFile is open
provFile.readline()
for line in provFile:

.....
 provFile will close itself when the with clause

finishes (don't need to call provFile.close())

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1616

More info on exceptionsMore info on exceptions

 The Python tutorial is a good resource:

 http://docs.python.org/tutorial/errors.html



http://docs.python.org/tutorial/errors.html

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

