
ExceptionsExceptions

2 Nov 2009
CMPT140
Dr. Sean Ho
Trinity Western University

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 22

Options for error handlingOptions for error handling

 Use a combination of these:

● Ask the user to be nice:
 User manual, precondition comments, prompts

● Print an error message to screen
● Set a result flag:

 e.g., return False upon error

● Panic and die: sys.exit()
● Raise an exception: ZeroDivisionError

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 33

ExceptionsExceptions

 Exceptions are a way of terminating execution
of the current context

 When an exception is raised (thrown),

● execution of the current procedure stops, and
● Control jumps to the nearest exception

handler (catches the exception)

 The exception handler can cleanup

 Execution then continues after that block

 If the exception reaches outermost level, an
error message is automatically generated

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 44

try / excepttry / except

 If an exception is raised within a try block,

 Execution of the block terminates and control
jumps to the except clause:

try:
while True:

numer = input('Numerator: ')
denom = input('Denominator: ')
print '%d / %d = %d' % (numer, denom, numer /

denom)

except:
print 'Oops!'

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 55

Catching specific exceptionsCatching specific exceptions

 Don't just catch all exceptions!

● May hide a genuine error, hard to debug

 Catch only specific exceptions we anticipate:

try:
while True:

numer = input('Numerator: ')
denom = input('Denominator: ')
print '%d / %d = %d' % (numer, denom, numer /

denom)

except ZeroDivisionError:
print 'Oops! Divide by zero!'

 Any other exception falls through to the next
exception handler

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 66

Handling exceptionsHandling exceptions

 The standard math.sqrt() raises ValueError on a
negative argument:

 from math import sqrt
 sqrt(-1) # ValueError

 We can handle this:
 try:

● num = input('Find sqrt of: ')
● result = sqrt(num)
● print 'The square root is', result

 except ValueError:
● print "Can't take square root of", num

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 77

Raising exceptionsRaising exceptions

 We can force exceptions to be raised:

 try:
● while True:

● if input('Guess a number: ') == 5:
● raise ZeroDivisionError

 except ZeroDivisionError:
● print 'You got it!'

 Within a handler, can re-raise the current exception:

 try:
● raise ZeroDivisionError

 except ZeroDivisionError:
● print 'oops, divided by zero!'
● raise # raises ZeroDivisionError

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 88

'else' clauses for exceptions'else' clauses for exceptions

 The optional else clause is executed only if the
try block completes without throwing any
exceptions:

 try:
● for tries in range(3):

● if input('Guess a number: ') == 5:
● raise ZeroDivisionError

 except ZeroDivisionError:
● print 'You got it!'

 else:
● print 'Too bad, you ran out of tries!'

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 99

'finally' clauses for exceptions'finally' clauses for exceptions

 The optional finally clause is always executed
before leaving the section, whether an
exception happened or not.

 try:
● for tries in range(3):

● if input('Guess a number: ') == 5:
● raise ZeroDivisionError

 except ZeroDivisionError:
● print 'You got it!'

 else:
● print 'Too bad, you ran out of tries!'

 finally:
● print 'Bye!'

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1010

Example: robust inputExample: robust input

while True:

try:
userIn = int(input(“Num of people? ”))

except (SyntaxError, NameError):
print “Please enter a number!”

except TypeError:
print “Enter just an integer, thanks!”

except KeyboardInterrupt:
print “OK, you want to quit!”
break

else:
break

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1111

Using exceptions: functionsUsing exceptions: functions

 Exceptions are an elegant way for functions to
indicate errors:

● Invalid input
 Parameters don't satisfy pre-conditions

● Error during execution (runtime error)
 Computed a bad value, can't continue

 It's good custom to specify in the docstring
what exceptions your function might raise

 Programs that call your function may wrap it in
a try/except block to handle your errors

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1212

Example: discriminantExample: discriminant

def discrim(a, b, c):
“””Find discriminant of a x**2 + b x + c = 0.
Pre: a, b, c are all floats or ints.
Post: returns sqrt(b**2 – 4 a c), if it exists.
Exceptions: raises ValueError if discriminant

doesn't exist.”””
from math import sqrt
return sqrt(b**2 – 4.0*a*c)

try:
d = discrim(2, 1, 3)

except ValueError:
print “No real roots!”

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1313

Auxiliary data with exceptionsAuxiliary data with exceptions

 Catch an exception and assign it to a variable:

try:
raise Exception('apples', 'oranges')

except Exception as exc:
print exc.args

 Here, exc is assigned to the exception object

 Auxiliary data (list of arguments) are passed
together with the exception: get it with .args

 Use this to specify additional info about the
error: perhaps some explanatory text

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1414

Example: opening filesExample: opening files

 When we open a file for reading or writing,
several things could go wrong:

● Try to read a non-existent file

● No permissions to read/write file

● Try to open a directory / non-file

 All of these errors produce an IOError

 Auxiliary info: error number and text description

try:
provFile = open(“prov.txt”)

except IOError as (errnum, errtxt):
print errtxt

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1515

Even better way to open filesEven better way to open files

 Python has a with clause:the object itself knows
how to clean itself up if any errors happen

 Use with files, so that the file will close itself:

with open(“prov.txt”) as provFile:
now provFile is open
provFile.readline()
for line in provFile:

.....
 provFile will close itself when the with clause

finishes (don't need to call provFile.close())

2 Nov 20092 Nov 2009CMPT140: exceptionsCMPT140: exceptions 1616

More info on exceptionsMore info on exceptions

 The Python tutorial is a good resource:

 http://docs.python.org/tutorial/errors.html

http://docs.python.org/tutorial/errors.html

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

