
Introduction to ObjectsIntroduction to Objects

6 Nov 2009
CMPT140
Dr. Sean Ho
Trinity Western University

6 Nov 2009CMPT140: objects 2

Object-oriented programmingObject-oriented programming

 Procedural paradigm: “recipe” list of actions

●Focus is on the procedures (verbs)
●Variables, data structures get passed into

procedures
 e.g.: string.upper('hello')

 Object-oriented paradigm: collections of objects

●Focus is on the data (nouns)
●Messages get passed between objects
●Procedures are methods belonging to objects

 e.g.: 'hello'.upper()

6 Nov 2009CMPT140: objects 3

Everything is an objectEverything is an object

 In object-orientation, all data are objects:

●Variables, procedures, even libraries

 We make things happen by passing messages
between objects
 myFile.read(16)
 appleName.upper()

 The object itself defines what messages it
accepts: these are called its methods

●e.g., files have read(), write(), etc.
strings have upper(), len(), etc.

main
program

myFile

numApples

upper()

file

read()

string

6 Nov 2009CMPT140: objects 4

Methods and attributesMethods and attributes

 Everything you can do with an object is
encapsulated in its object definition

 Objects have attributes (local variables)

 Objects have methods (functions)

●A collection of methods defines an interface

 Example: design an ADT for a Student:

●Attributes: data stored with each Student
 Name, ID#, phone #, GPA, course list,

●Methods: operations involving a Student:
 Register for course, change major, call dad for $$, ...

6 Nov 2009CMPT140: objects 5

Classes and instancesClasses and instances

 We define (declare) object classes (types).
A class is a user-defined type, containing:

●Attributes: data stored in each object
●Methods: operations involving the object

 Constructor method: how to set up a new object
 Destructor method: how to destroy an object cleanly

 Then instantiate the class (declare variables)

 e.g.: joe is a variable of type Student

● joe is the instance; Student is the class

6 Nov 2009CMPT140: objects 6

Example: declaring a classExample: declaring a class

 Define the Student type (capitalize class name):
 class Student:

➢ def __init__(self):
● self.firstName = ''
● self.lastName = ''
● self.GPA = 4.0

 The __init__() method is the constructor

 First parameter of all methods is 'self'

●Refers to current object

 Instantiate a new object of Student type:
 joe = Student() joe.firstName = “Joe”

6 Nov 2009CMPT140: objects 7

Objects may hold other objectsObjects may hold other objects

 class Date:
➢ def __init__(self):
 self.day = 0

 self.month = 0

 self.year = 0

 class Student:
➢ def __init__(self):
 self.firstName = ""

 self.lastName = ""

 self.birthdate = Date()

 Creating a new Student makes a new Date object:
 bob = StudentRecord()
 bob.birthdate.year = 1986

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob

6 Nov 2009CMPT140: objects 8

Constructor with parametersConstructor with parameters

 We can pass parameters to the constructor:

●Usually for setting initial values of attributes:
 class Student:

➢ def __init__(self, f, l, g):
● self.firstName = f
● self.lastName = l
● self.GPA = g

 Instantiate with name 'Joe Smith' and GPA=3.8:
 joe = Student('Joe', 'Smith', 3.8)

 This now requires 3 parameters to constructor

6 Nov 2009CMPT140: objects 9

Default parametersDefault parameters

 Functions may have default parameters:
 def double_me(x=0):

➢ return x*2

 Can call double_me() with 0 or 1 parameters:
 double_me() → returns: 0

 Apply this to the constructor:
 class Student:

➢ def __init__(self, f='', l='', g=4.0):
● self.firstName = f
● self.lastName = l
● self.GPA = g

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

