Introduction to Objects

6 Nov 2009

CMPT140

Dr. Sean Ho

Trinity Western University

9
TRINITY
WESTFRN

L INIVERSITY

Object-oriented programming

®m Procedural paradigm: “recipe” list of actions

Focus is on the procedures (verbs)

Variables, data structures get passed into
procedures

¢+ e.g.: string.upper(‘hello’)
®m Object-oriented paradigm: collections of objects
Focus is on the data (nouns)
Messages get passed between objects

Procedures are methods belonging to objects
. +e.d.: 'hello'.upper()
e

1|
If;:—;;—:—?;m CMPT140: objects 6 Nov 2009

W ININERSITY

Everything is an object

B In object-orientation, all data are objects:

Variables, procedures, even libraries

® \We make things happen by passing messages
between objects read() myFile

» myFile.read(16) file
+ appleName.upper()

B The object itself defines what messages it
accepts: these are called its methods

upper()
numApples

string

e.g., files have read(), write(), etc.
strings have upper(), len(), etc.

Y

m{-ﬁm CMPT140: objects 6 Nov 2009 3

W LINPMERSITY

Methods and attributes

®m Everything you can do with an object is
encapsulated in its object definition

®m Objects
®m Objects
A col

nave attributes (local variables)
nave methods (functions)

ection of methods defines an interface

® Example: design an ADT for a Student:

Attributes: data stored with each Student
* Name, ID#, phone #, GPA, course list,

Methods: operations involving a Student:

+ Register

TRINITY
WESTFRN
W LINIVFRSITY

Y

for course, change major, call dad for $%, ...

CMPT140: objects 6 Nov 2009

Classes and instances

m We define (declare) object classes (types).
A class is a user-defined type, containing:

Attributes: data stored in each object

Methods: operations involving the object

+ Constructor method: how to set up a new object
+ Destructor method: how to destroy an object cleanly

B Then instantiate the class (declare variables)
B e.g.: joe Is a variable of type Student
joe Is the instance; Student is the class

»ha
INITY
If;,_—;;—,—mm CMPT140: objects 6 Nov 2009

W ININERSITY

Example: declaring a class

®m Define the Student type (capitalize class name):

+ class Student:
>def _init_ (self):
e self.firstName ="

e self.lastName ="'
e self.GPA = 4.0

mThe init () method is the constructor
B First parameter of all methods is 'self*

Refers to current object
B Instantiate a new object of Student type:

+ joe = Student() joe.firstName = “Joe”
4
m:'gm CMPT140: objects 6 Nov 2009

| 1 INIVERSITY

Objects may hold other objects

+ class Date: bob

> def __init_ (self): k first: Bob

last: Smith
+ self.day =0 ID: 2389

+ self.month =0 bday: \
+ self.year =0

+ class Student: \ day: 12
> def __init__ (self): month: 5

+ self.firstName = "" year: 1986

+ self.lastName = ""
+ self.birthdate = Date()

® Creating a new Student makes a new Date object:
¢+ bob = StudentRecord()
we ¢ bob.birthdate.year = 1986

INITY .
Y{E’E—‘:TFRN CMPT140: objects 6 Nov 2009
L LINERSITY

Constructor with parameters

m WWe can pass parameters to the constructor:

Usually for setting initial values of attributes:

¢ class Student:
>»def _init_(self, f, |, g):
e self.firstName = f

e self.lastName = |
eself.GPA =g

B Instantiate with name ‘Joe Smith' and GPA=3.8:
+ joe = Student('jJoe’, 'Smith’, 3.8)
B This now requires 3 parameters to constructor

Y

, INITY
‘HTFEM CMPT140: objects 6 Nov 2009

| 1 INIVERSITY

Default parameters

B Functions may have default parameters:

+ def double _me(x=0):
> return x*2
®m Can call double_me() with 0 or 1 parameters:

¢+ double_me() - returns: O
m Apply this to the constructor:

¢ class Student:
>»def _init_ (self, f=", I=", g=4.0):
e self.firstName = f

e self.lastName = |
e self.GPA =g

Y

m}ﬁm CMPT140: objects 6 Nov 2009

| 1 INIVERSITY

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

