
Objects: copy vs. aliasObjects: copy vs. alias

13 Nov 2009
CMPT140
Dr. Sean Ho
Trinity Western University

13 Nov 2009CMPT140: objects 2

Pretty-printing an objectPretty-printing an object

 You can define the special __str__() method to
return a “pretty-printed” string as a
human-readable representation of your object:

class Student:

def __init__(.....): # as before

def __str__(self):

return self.first + ' ' + self.last + ', GPA: ' + self.GPA

 This is used by print() to display your object:
>>> print joe

Joe Smith, GPA: 3.8

13 Nov 2009CMPT140: objects 3

Copy vs. alias for objectsCopy vs. alias for objects

 Objects are mutable: may be modified in-place
 student1.GPA = 2.9

 student1.GPA = 3.2

 This means assignment is just aliasing:
 student2 = student1

 student2.GPA = 3.4 # affects student1.GPA

 To make a separate copy, use copy.deepcopy():
 import copy

 student2 = copy.deepcopy(student1)

 Or create a new instance, and copy values:
 student2 = Student()

 student2.GPA = student1.GPA

13 Nov 2009CMPT140: objects 4

 Assignment: alias
 larry = bob

More on copy vs. aliasMore on copy vs. alias
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob
first: Bob
last: Smith
ID: 2389
bday:

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob larry
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

 copy.copy(): shallow copy
 larry = copy.copy(bob)

 copy.deepcopy(): deep copy
 larry = copy.deepcopy(bob)

13 Nov 2009CMPT140: objects 5

Using 'id' to look at aliasesUsing 'id' to look at aliases

 We can check whether two names are aliases or
separate copies by using the Python built-in 'id':
 id(student1) # 11563216

 student2 = student1 # alias

 id(student2) # 11563216

 student2 = copy.deepcopy(student1) # copy

 id(student2) # 18493888

13 Nov 2009CMPT140: objects 6

Creating a list of objectsCreating a list of objects

 A student database is just a list of Student s

 It's tempting to use this shortcut:
 student = Student()
 studentDB = [student] * 35

●But this will make a list of 35 aliases to the
same object!

 Use a for loop to create separate objects:
 studentDB = [0] * 35
 for idx in range(len(studentDB)):

➢studentDB[idx] = StudentRecord()

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

