
OO Example: FractionsOO Example: Fractions

20 Nov 2009
CMPT140
Dr. Sean Ho
Trinity Western University

20 Nov 2009CMPT140: OO: fractions 2

OO Review: user-defined typesOO Review: user-defined types

 A class is a user-defined container type

●Attributes and methods

 Let's define a Fraction type

●A fraction has an integer numerator and
integer denominator

●Attributes?
● numer, denom
●Methods?
● add, sub, mul, etc.

 See oofraction.py in our example directory

http://twu.seanho.com/python/oofraction.py

20 Nov 2009CMPT140: OO: fractions 3

Creating a bare Fraction classCreating a bare Fraction class

 class Fraction:

 Constructor, with optional arguments:

●We want to hide the numer and denom:
➢def __init__(self, n=0, d=1):

● self.__numer = n
● self.__denom = d

●Any potential problems/constraints?

 String representation, for print:
➢def __str__(self):

● return "%d / %d" %
(self.__numer, self.__denom)

20 Nov 2009CMPT140: OO: fractions 4

Using the Fraction classUsing the Fraction class

 This is enough for us to create a Fraction object

●a.k.a. “create a Fraction instance”
●a.k.a. “instantiate the Fraction class”

 f1 = Fraction(2, 3)

 print f1 # “2 / 3”

 We can't do much with our Fraction object yet,
so the next step is to implement some methods

 Multiple methods may want to check the
constraint of denom ≠ 0: make a helper method

20 Nov 2009CMPT140: OO: fractions 5

Helper: check constraintsHelper: check constraints

 Constraint: denom should never be 0

 Don't want this to be publicly-accessible, so
start name with '__' (double-underscore):
hidden from view in Python

● In C++/Java, can declare it 'private'
 def __check(self):

 How to flag error? Use exceptions!
➢ if denom == 0:

● raise ZeroDivisionError
●Up to whoever is using this Fraction to

handle the error

20 Nov 2009CMPT140: OO: fractions 6

Set/get (mutator/accessor)Set/get (mutator/accessor)

 We have hidden the attributes __numer and
__denom from direct access by other programs

 We can give them read or write access to those
attributes, but only through our methods:

●Get method (accessor): def get_N():
●Set method (mutator): def set_N():

 This way we can do safety checking,
e.g., check if denom is being set to 0

 Potentially: security/permissions,
who is modifying this attribute, logging, etc.

20 Nov 2009CMPT140: OO: fractions 7

Python customizationsPython customizations

 Now we can define the methods add, mul, etc.!

 Certain method names are special in Python:
 __init__: Called by the constructor when we setup a

new instance
 __str__: Called by print
 __mul__: Overloads the (*) operator
 __add__: Overloads the (+) operator
 __le__: Overloads the (<) operator
 etc. (pretty much any operator can be overloaded!)
● http://docs.python.org/ref/specialnames.html

http://docs.python.org/ref/specialnames.html

20 Nov 2009CMPT140: OO: fractions 8

e.g.: Multiplication methode.g.: Multiplication method

 Multiplication (*) operator takes two operands:

●self (the current Fraction object) and
other (the other Fraction being multiplied):

 def __mul__(self, other):

●e.g., if f2 and f2 are Fractions, then doing
f1 * f2 is equivalent to f1.__mul__(f2)

●self refers to f1, other refers to f2

 Create a new Fraction object as the product:
 p = Fraction(self.get_N() * other.get_N(),

self.get_D() * other.get_D())

 Then simplify and return the product

20 Nov 2009CMPT140: OO: fractions 9

Using customizationsUsing customizations

 Now that we've written our multiplication
method with the special name __mul__(),
we can do:
 f1 = Fraction(2, 3)
 f2 = Fracion (1, 2)
 print f1 # 2 / 3
 print f2 # 1 / 2
 print f1 * f2 # 2 / 6

 The other operators /, +, -, and even < can be
defined similarly: operator overloading
(extending definition of '*' to Fraction type)

	Title Slide
	Sample Content
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

