
DictionariesDictionaries

23 Nov 2009
CMPT140
Dr. Sean Ho
Trinity Western University

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 22

What's on for todayWhat's on for today

 Dictionaries

● Keys and values
● Basic dictionary methods:

 .keys(), .values(), .items()

● Iterating through dictionaries
● Other dictionary methods:

 len(), del, in, .get(), .copy()

● Application: hinting
● Application: word frequencies

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 33

Python type hierarchy (partial)Python type hierarchy (partial)

 Atomic types

● Numbers

 Integers (int, long, bool): 5, 500000L, True

 Reals (float) (only double-precision): 5.0

 Complex numbers (complex): 5+2j

 Container (aggregate) types

● Immutable sequences

 Strings (str): "Hello"

 Tuples (tuple): (2, 5.0, "hi")

● Mutable sequences

 Lists (list): [2, 5.0, "hi"]

● Mappings

 Dictionaries (dict): {"apple": 5, "orange": 8}

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 44

DictionariesDictionaries

 Python dictionaries are mutable, unsorted
containers holding associative key-value pairs

 Create a dictionary with curly braces {}:
 appleInv = {'Fuji': 10, 'Gala': 5, 'Spartan': 7}

 Index a dictionary using a key:
 appleInv['Fuji'] # returns 10

 Values can be any object and may mix types:
 appleInv['Rome'] = range(3)

 Keys can be any immutable type:
 appleInv[('BC', 'Red Delicious')] = 12

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 55

keys() and values()keys() and values()

 All dictionaries have the following methods:

● keys(): returns a list of all the keys
 appleInv.keys()

['Fuji', 'Spartan', 'Rome', 'Gala', ('BC', 'Red
Delicious')]

● values(): returns a list of all the values
 appleInv.values()

[10, 7, [0, 1, 2], 5, 12]

 Dictionaries are unsorted!

● Although the order of keys() and values() will
correspond if the dictionary isn't modified

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 66

Iterating through dictionariesIterating through dictionaries

 To print our apple inventory:
 for appleType in appleInv.keys():

● print "We have", appleInv[appleType], \
● appleType, "apples."

 Output:
 We have 10 Fuji apples.
 We have 7 Spartan apples.
 We have [0, 1, 2] Rome apples.
 We have 5 Gala apples.
 We have 12 ('BC', 'Red Delicious') apples.

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 77

Other dictionary methodsOther dictionary methods

 len(appleInv)

 del appleInv['Fuji']

 'Fuji' in appleInv

 appleInv.get('Braeburn', 0)

● Return default value if key is not in dictionary

 appleInv.items()

● Returns a copy of the dictionary as a list of
(key, value) tuples

 appleInv.copy()

● Shallow copy

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 88

Dictionary application: hintingDictionary application: hinting

 Hinting: save (cache) previously-calculated
values for future use

 Fibonacci example:

def fib(n):

if n == 0 or n == 1:

return 1
return fib(n-1) + fib(n-2)

 But this is very slow and inefficient!
● Try fib(28), fib(29), fib(30),

 Fibonacci numbers get very big very fast

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 99

Fibonacci revisitedFibonacci revisited

 The call-graph for fib() shows that, e.g, fib(2)
gets recalculated many times:

 If we save the value of fib(2) the first time it's
calculated, we can reuse that hint

O(n2) calls
in the
graph

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 1010

Hinting FibonacciHinting Fibonacci

 Use a dictionary to store precalculated hints:

● Key is n; value is fib(n)
● When we calculate a fib(), add it to the dict
● Before calculating a fib(), check to see if it's

already in the dictionary of hints
● Base cases are in the initial hint dictionary

fibHints = {0:1, 1:1}

def hFib(n):

if n in fibHints.keys():
return fibHints[n]

fibHints[n] = hFib(n-2) + hFib(n-1)
return fibHints[n]

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 1111

Iterative FibonacciIterative Fibonacci

 Actually, we don't need recursion
to solve Fibonacci:

def iFib(n):
 current = 1
 parent = 1
 grandparent = 0
 for i in range(int(n)):
 current = grandparent + parent
 grandparent = parent
 parent = current
 return current

 We show hFib() just to illustrate the concept of
hinting

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 1212

Application: word frequencyApplication: word frequency

 Another application: count how many times
each word shows up in a block of text

 If we were counting letters instead, we could
use a list, since there are only 26 letters

● But # unique words is unknown!

 Each key is a word; the value is its frequency

 Read file one word at a time

● Increment the value associated with the
given word

● (If word not in dictionary, use 0 as value)

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 1313

Word frequency: pseudocodeWord frequency: pseudocode

 Open file for reading

 Read one line at a time:

● Normalize: convert to lowercase and
replace all punctuation with spaces

● Split into words
● For each word:

 Increment word count

 Sort and output top words

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 1414

Word freq: helper functionsWord freq: helper functions

 OO methods built-in to every string:

● myStr.split() splits on whitespace
● myStr.replace(oldstr, newstr) replaces all

occurences of oldstr with newstr
● (The tokenize library has more!)

 sorted() returns a sorted copy of any list:
 sorted([5,2,3,1,4])

● Sort a dictionary: return a list of keys,
sorted by value

 sorted(myDiction, key=myDiction.get)

23 Nov 200923 Nov 2009CMPT140: dictionariesCMPT140: dictionaries 1515

wordfreq.pywordfreq.py

 See wordfreq.py for complete program

 Filename is hard-coded as “input.txt”

● Canadian Charter: charter.txt

 Sorts in ascending order of frequency

 Prints last 20 entries of the sorted list

http://twu.seanho.com/python/wordfreq.py

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

