
Stacks and QueuesStacks and Queues

25 Nov 2009
CMPT140
Dr. Sean Ho
Trinity Western University

● Midterms back:
avg 51/70 ≈ 74%



25 Nov 2009CMPT140: stacks and queues 2

Abstract Data StructuresAbstract Data Structures

 An abstract data structure provides:

●A way of storing data
●Functions to access/operate on that data

 And ADT can be implemented using a class:

●Attributes and methods

 Actually, dictionaries, lists, etc. are ADTs

●Python has built-in implementations

 Today we'll talk about two more: stacks, queues

●More in CMPT 231 (Data Structures) in Spr!



25 Nov 2009CMPT140: stacks and queues 3

Stacks: theoryStacks: theory

 In a stack, the last item
added to the stack
is the first item off:

●LIFO: last in, first out
●Analogy: stack of boxes or papers on desk

 Operations/methods:

●push(x): add item x to top of stack
●pop(): remove top item from stack and 

return it
● (also: peek(): get top item without removing 

it from the stack)

wisetome.com

http://www.wisetome.com/splat/
http://www.wisetome.com/splat/


25 Nov 2009CMPT140: stacks and queues 4

Queues: theoryQueues: theory

 With a queue, the first item
added to the queue
is the first item out of the queue:

●FIFO: first in, first out
●Analogy: waiting in line at bank, or

tubes/pipes for water

 Operations/methods:

●enqueue(x): add x to back of queue
●dequeue(): remove item from front of queue 

and return it

wisetome.com

http://www.wisetome.com/splat/
http://www.wisetome.com/splat/


25 Nov 2009CMPT140: stacks and queues 5

Class design: StackClass design: Stack

 Design an interface for a Stack class:

●Public methods: name, parameters, 
pre/post-conditions

●Worry about attributes later
 class Stack:

➢ def push( self, item ):
● """pre: check if stack full?
● post: stack has grown by 1; item is on top """

➢ def pop( self ):
● """pre: stack not empty
● post: return top item from stack;

stack is smaller by one"""



25 Nov 2009CMPT140: stacks and queues 6

Class design: QueueClass design: Queue

 Design an interface for a Queue class:

●Public methods: name, parameters, 
pre/post-conditions

 class Queue:
➢ def enqueue( self, item ):

● """pre: queue not full
● post: queue has grown by 1; item is at tail"""

➢ def dequeue( self ):
● """pre: queue not empty
● post: return item from head of queue,

queue gets smaller"""



25 Nov 2009CMPT140: stacks and queues 7

Implementing stacksImplementing stacks

 What attributes for our Stack class?

 The ADT can be implemented using various 
different existing data structures:

●Plain C array; Python list; linked-list, etc.

 Using plain C array:

●Fixed length → upper limit on size of stack
●Keep an index to track current top of stack
●push(x) stores item x in next entry of array
●pop() returns top entry and decrements idx



25 Nov 2009CMPT140: stacks and queues 8

Implement Stack classImplement Stack class

 class Stack:

 Constructor sets up our empty list and index:
➢ def __init__(self, size=10):

● self.__list = range(size) # set size
● self.__top = -1

 Use double-underscore ('__list') to hide private 
internal attributes

 We have Python lists here, but if we were using 
plain C arrays, we'd need to declare the 
maximum size of the array and element type:

 int* __list = new int[size]



25 Nov 2009CMPT140: stacks and queues 9

Implement push() and pop()Implement push() and pop()

 push() takes an item to add to the stack:
 def push( self, item ):

●Store item in array, and increment top idx:
➢ self.__top += 1
➢ self.__list[self.__top] = item

●What if array is already full?

 pop() takes no arguments but returns an item:
 def pop( self ):

➢ self.__top -= 1
➢ return self.__list[ self.__top+1 ]



25 Nov 2009CMPT140: stacks and queues 10

Stacks and queues in PythonStacks and queues in Python

 Queues can also be implemented with C arrays.

 It's much easier to implement stacks/queues 
using Python lists: (but not all langs have this!)

 Stack:

●Push: use .append(): myList.append( item )
●Pop: use .pop(): myList.pop() (pops frm end)

 Queue:

●Enqueue: use .append() (adds to end)
●Dequeue: use .popleft() (pops from start)


	Title Slide
	Sample Content
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

