
OO Design for Graphics:OO Design for Graphics:
A Simple RPN CalculatorA Simple RPN Calculator

2 Dec 2009
CMPT140
Dr. Sean Ho
Trinity Western University

●button.py
●calculator.py

http://twu.seanho.com/python/button.py
http://twu.seanho.com/python/calculator.py


2 Dec 20092 Dec 2009CMPT140: GUI design: calculatorCMPT140: GUI design: calculator 22

Top-down GUI designTop-down GUI design

 Task: make a simple RPN calculator

● Reverse Polish Notation: use a stack

 GUI design:
non-functional mock-up

● Analogous to Sample I/O
in lab write-ups

 Buttons:

● Location, size, text label
● Need to detect mouse clicks

● Write and test a class just for a Button 



2 Dec 20092 Dec 2009CMPT140: GUI design: calculatorCMPT140: GUI design: calculator 33

Button class: see Button class: see button.pybutton.py

 Attributes:

● A Rectangle for the body of the button
● A Text label that goes on top

 Constructor:

● Get position (centre), size (height/width), 
and string label

● Create and draw a Rectangle box
 Compute top-left and bottom-right corners

● Create and draw the Text label

 Also lots of accessor (get) functions

http://twu.seanho.com/python/button.py


2 Dec 20092 Dec 2009CMPT140: GUI design: calculatorCMPT140: GUI design: calculator 44

Button: activate() and clicked()Button: activate() and clicked()

 Activation: a bool flag enabling/disabling button

● Public methods: activate(), deactivate()
● Set flag and change appearance (dim)

 Check for button click: clicked( pt )

● Parameter: a Point, from getMouse()
● Check if button is active
● Check if coordinates of pt are within the 

button's box
● Return a bool



2 Dec 20092 Dec 2009CMPT140: GUI design: calculatorCMPT140: GUI design: calculator 55

Unit testingUnit testing

 Unit testing is testing a component in isolation

● Need to know the public interface
 Constructor, (de)activate(), clicked()

● Any invariants (conditions guaranteed by 
the component to be true)? Check them!

● Pre/post-conditions of all public methods
● Write test cases: then unit testing can 

even be automated!  (see: pyunit)

 Once all components have been unit tested, 
integration testing ensures they work together

http://pyunit.sourceforge.net/


2 Dec 20092 Dec 2009CMPT140: GUI design: calculatorCMPT140: GUI design: calculator 66

Unit testing: ButtonUnit testing: Button

 In IDLE, create a window:
 from graphics import *
 win = GraphWin()

 Create a Button or two:
 from button import Button

 b1 = Button(win, 50, 50, 60, 20, “hello!”)

 Activate/deactivate them: b1.activate()

 Try testing for clicks:
 b1.clicked( win.getMouse() )

● Will it work when button is deactivated?



2 Dec 20092 Dec 2009CMPT140: GUI design: calculatorCMPT140: GUI design: calculator 77

Calculator: attributesCalculator: attributes

 Now on to the main program (see calculator.py)

 GUI widgets (attributes):

● Main window
● Display/output:

text box and rectangle
● Function buttons

 Attributes for internal computation:

● Stack for RPN calculations
● Current number being entered by user

 Allow backspace button to edit this

http://twu.seanho.com/python/calculator.py


2 Dec 20092 Dec 2009CMPT140: GUI design: calculatorCMPT140: GUI design: calculator 88

Calculator: constructorCalculator: constructor

 We split up the constructor into several parts:

● Setup the window and coordinate system
● Setup the output display area

 Subroutine: __createDisplay()

● Setup all the buttons
 Subroutine: __createButtons()

● Initialize the stack/internals

 Coordinate system: centre the buttons on
a 5x5 grid from (0,0) to (4,4)

● Margin: setCoords(-0.5, 4.5, 4.5, -0.5)



2 Dec 20092 Dec 2009CMPT140: GUI design: calculatorCMPT140: GUI design: calculator 99

Calculator: button configCalculator: button config

 We have a lot of buttons to create: for each, set

● Location (x, y coords of centre)
● Label (text string)

 Store the configuration in a dictionary:
● buttonConfig = {  “*”:(3,2), “/”:(4,2) … }

 Loop over the dictionary to create the buttons:
● for (label, (x, y)) in buttonConfig: ....

 Easy to reconfigure the buttons!



2 Dec 20092 Dec 2009CMPT140: GUI design: calculatorCMPT140: GUI design: calculator 1010

Calculator: main event loopCalculator: main event loop

 The overall flow for the main program is an 
event loop (run() method):

 Infinite loop waits for an event from user

● Events: mouse click, motion, keypress, …
● In this case, just mouse clicks: getMouse()

 When user clicks, find which button was clicked

● Iterate over all buttons, testing if .clicked()

 Then do the appropriate action

● Big if/elif on all possible actions: 0-9, +-*/, 
Enter, backspace, quit, ...


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

