
Storage allocation options:Storage allocation options:
extern, auto, static, etc.extern, auto, static, etc.

23 January 2009
CMPT166
Dr. Sean Ho
Trinity Western University



23 Jan 200923 Jan 2009CMPT166: storage allocationCMPT166: storage allocation 22

Review of last timeReview of last time

 <string>

 <fstream>, ifstream, getline(), ofstream

 <vector>

 Addendum: pre-increment / post-increment

● i++ returns the value of I first, then 
increments

● ++i increments first, then returns the new 
value of I

 i=5; cout << ++i; // prints 6



23 Jan 200923 Jan 2009CMPT166: storage allocationCMPT166: storage allocation 33

Storage flags for variablesStorage flags for variables

 When declaring a variable in C++, we have 
several optional flags/modifiers we can apply:

 extern

 auto

 static

 register

 const vs. volatile



23 Jan 200923 Jan 2009CMPT166: storage allocationCMPT166: storage allocation 44

Global variablesGlobal variables

 Global entities (variables, functions) are 
available to all parts of the program

● Even code linked in from other files

 Anything declared in the top level of the file 
(outside any function or class) is global

 A global object can be accessed by another file, 
but that file still needs a declaration so the 
compiler knows that the global object exists

● Use extern to indicate the object is 
allocated elsewhere



23 Jan 200923 Jan 2009CMPT166: storage allocationCMPT166: storage allocation 55

Memory allocation and linkageMemory allocation and linkage

 Every global variable in the program must have 
its memory allocated exactly once

 If multiple files within the program want to 
access the global variable, it should be 
allocated in only one of those files

● The other files declare it extern to tell the 
compiler that it will be allocated 
elsewhere

 The linker assembles all the object files and 
connects all the references to the global 
variable



23 Jan 200923 Jan 2009CMPT166: storage allocationCMPT166: storage allocation 66

extern: sample usageextern: sample usage

 File global1.cpp:

● int globalApples;
● void multApples(); // declaration only
● void main() {

 globalApples = 5;
 multApples(); }

 File apples.cpp:

● extern int globalApples; // in global1.cpp
● void multApples() {

 globalApples *= 2; }



23 Jan 200923 Jan 2009CMPT166: storage allocationCMPT166: storage allocation 77

auto: local variablesauto: local variables

 Anything declared inside a function or class is 
local to that function or class

● Scope rules: where the entity is accessible

 The keyword auto also indicates a variable 
needs to be local in scope

● Don't usually need to use auto; it's default
 void getInput() {

● auto string myInput;
● cin >> myInput;

 }



23 Jan 200923 Jan 2009CMPT166: storage allocationCMPT166: storage allocation 88

register: fast accessregister: fast access

 Registers are hardware memory very close to 
the CPU, very fast access but very limited space

 The register keyword asks the compiler to make 
access to this variable as fast as possible

 register int criticalApples;

● Cannot use pointers with registers
● Cannot be global or static

 Generally, the compiler does a good job of 
placing your variables in memory, so register is 
not needed



23 Jan 200923 Jan 2009CMPT166: storage allocationCMPT166: storage allocation 99

static: persistent datastatic: persistent data

 Usually, local variables in a function are 
deallocated when the function finishes

 static: the variable stays around; keeps its old 
value from the last time the function was run

● Initialization is done only the first time
 void incCounter() {

● static int i = 0;
● cout << “i = “ << ++i << endl; }

● Each call to incCounter() adds one to i
● i is still only accessible from inside 

incCounter() (not global!)



23 Jan 200923 Jan 2009CMPT166: storage allocationCMPT166: storage allocation 1010

static: file scopestatic: file scope

 static has a second meaning, when applied to a 
function or to a global variable:

● File scope: this name is unavailable 
outside this file

 If we changed the preceding example to declare 
globalApples static:

● File global1.cpp:
 static int globalApples;

● File apples.cpp:
 extern int globalApples; // fails!



23 Jan 200923 Jan 2009CMPT166: storage allocationCMPT166: storage allocation 1111

const and volatileconst and volatile

 In C++ the compiler can enforce constants:
 const int numApples = 10;

● Must initialize in the declaration
● Tags the variable as unchangeable

 The volatile keyword hints to the compiler that 
this variable may change quite often

 volatile int myMood;

● Compiler does optimizations accordingly


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

