
Creating Classes in C++:Creating Classes in C++:
Stack exampleStack example

26 Jan 2009
CMPT166
Dr. Sean Ho
Trinity Western University



26 Jan 200926 Jan 2009CMPT166: classesCMPT166: classes 22

Quick note about pointersQuick note about pointers

 We can refer to attributes, methods of an object 
with the dot “.” operator:

 myVec.size()

 But remember that C++ always passes 
parameters as call-by-value

 So to pass an object, we need to pass a pointer

 To get to attributes/methods of an object from 
its pointer, use the arrow “->” operator:

 myVectorPtr->size()

 Also, new always returns a pointer



26 Jan 200926 Jan 2009CMPT166: classesCMPT166: classes 33

Classes: declare vs. defineClasses: declare vs. define

 (See Stack class in examples/ directory)

 Header file: Stack.h

● Declare Stack class
● public/private sections
● Declare methods, including constructor 

(Stack()) and destructor (~Stack())
● Defines helper class: Node

 Implementation: Stack.cpp

● Define methods in Stack:: namespace
 void Stack::push(void* dat)

http://twu.seanho.com/09spr/cmpt166/examples/Stack/


26 Jan 200926 Jan 2009CMPT166: classesCMPT166: classes 44

Stack.h: header fileStack.h: header file

 Pre-processor include guards: #ifdef

 Helper class: Node: a node in a linked list

● Attributes: data, next
 void* data means payload can be anything

● Methods: constructor, destructor

 Stack class: we implement using linked list

● Attribute: Node* head (private)
● Methods: push(), pop(), peek()

 Also constructor, destructor
 peek() returns top value without popping



26 Jan 200926 Jan 2009CMPT166: classesCMPT166: classes 55

Stack.cpp: define methodsStack.cpp: define methods

 Define methods of both Node and Stack classes

 Must prefix names of methods with class names

● each class has its own namespace

void Stack::push(void* dat)

 Define constructors, destructors

● Con-/de-structors don't return anything

Stack::~Stack()

 Refer to attributes directly (no need for “self”)



26 Jan 200926 Jan 2009CMPT166: classesCMPT166: classes 66

Managing memory: who owns?Managing memory: who owns?

 Our linked-list is a dynamic data structure

● Allocates memory on the heap
● Must make sure to deallocate properly!

 The critical question is: who owns the object?

● Who's responsible to deallocate its memory?

 Philosophy in Stack.cpp: calling program owns the 
data/payload, must deallocate it

● So our destructors do not do any dealloc
● So ~Stack() assumes stack must be empty!



26 Jan 200926 Jan 2009CMPT166: classesCMPT166: classes 77

StackTest.cpp: testbedStackTest.cpp: testbed

 Stack.cpp doesn't have a main() function

 StackTest.cpp is our testbed program

● Has a main() function, creates a Stack
● Creates payloads; deallocs them, too

 using namespace std; line goes in testbed

● Not in header files! (would defeat the 
purpose of namespaces)

 #include “Stack.h”
 #include <iostream>
 using namespace std;


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

