
InheritanceInheritance

28 Jan 2009
CMPT166
Dr. Sean Ho
Trinity Western University

DogsAndCats
example

http://twu.seanho.com/09spr/cmpt166/examples/DogsAndCats

28 Jan 200928 Jan 2009CMPT166: inheritanceCMPT166: inheritance 22

Why use inheritance?Why use inheritance?

 Reusability

● Create new classes from existing ones
 Absorb attributes and behaviours
 Add new capabilities

 Polymorphism
 Enable developers to write programs with a

general design
 A single program can handle a variety of existing

and future classes
 Aids in extending program, adding new

capabilities

28 Jan 200928 Jan 2009CMPT166: inheritanceCMPT166: inheritance 33

Superclasses and subclassesSuperclasses and subclasses

 Attribute: “has a” relationship:

● A Car has a steeringWheel

 Subclass: “is a kind of” relationship:

● A Convertible is a kind of Car
● Inheritance relationships form

tree-like class hierarchies

 Polymorphism: write once

● changeOil() method
● works on all Cars,

not just Convertibles

Community
Member

Alumni

Student

Employee

Faculty Staff

Administrator Teacher

28 Jan 200928 Jan 2009CMPT166: inheritanceCMPT166: inheritance 44

Subclassing in C++Subclassing in C++

 When declaring a class, indicate its superclass
(parent):

 class Dog : public Pet {

● A Dog is a kind of Pet
● Inherits everything Pet has
● Can add Dog-specific attribs/methods

 Inherit as public

● So all public members of Pet stay public
● Otherwise they become private in Dog

28 Jan 200928 Jan 2009CMPT166: inheritanceCMPT166: inheritance 55

public/protected/privatepublic/protected/private

 Recall that protected means:

● inaccessible to outside world
● but accessible to methods in a subclass

 So any protected member of Pet is accessible to
Dog (but not private members)

 Rule of thumb: make all attributes
 private or protected by default

● Write set/get functions as needed

28 Jan 200928 Jan 2009CMPT166: inheritanceCMPT166: inheritance 66

Note: default parametersNote: default parameters

 Methods may have default values for tail-end
parameters:

 void say(string msg = “Hello!”) {
● cout << msg << endl;

 }

 Useful for constructors:
 class Stack {

● Stack(int size = 0);
 }
 Stack myStack(5);
 Stack yourStack();

28 Jan 200928 Jan 2009CMPT166: inheritanceCMPT166: inheritance 77

Overloading functionsOverloading functions

 We've seen operators like '<<' that have different
meanings depending on the type of the operands

● What does '<<' do on ints? On ofstreams?

 This is called overloading

 We can overload functions using multiple
definitions with different parameter lists:

 int dbl(int x) return 2*x;
 float dbl(float x) return 2.0*x;
 string dbl(string x) return x+x;

 Overloading vs. default parameters?

28 Jan 200928 Jan 2009CMPT166: inheritanceCMPT166: inheritance 88

ConstructorsConstructors

 When an object (variable) is instantiated
(created) in a block, its memory is allocated and
its constructor is called

● In C++, constructor is always called
● Destructor is called when object

disappears

 Constructor of a subclass should call the
superclass constructor first:

 public Dog() : Pet() {

● Initialize Pet stuff first, then Dog-specific

28 Jan 200928 Jan 2009CMPT166: inheritanceCMPT166: inheritance 99

UpcastingUpcasting

 A reference to an instance of a subclass may
also be treated as an instance of the superclass

 class Dog : public Pet { …
 Dog fido

● Every Dog is also a Pet

 Pointer to fido:
 Pet* myPetPtr = &fido;

● This assignment works!
● “forgets” the object is a Dog,

only thinks of it as a generic Pet

28 Jan 200928 Jan 2009CMPT166: inheritanceCMPT166: inheritance 1010

Virtual methodsVirtual methods

 A subclass can redefine a method defined by the
superclass

● Every Pet knows how to speak()
● But Dogs speak() differently from Cats
● Subclasses overload speak()

 Flag the method as virtual in the superclass

 Late binding: which version of speak() to use?

● Decided at run-time

 Polymorphism: same code works on several
different types, all subclasses of the same parent

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

