
Polymorphism, References, Polymorphism, References,
and the Copy Constructorand the Copy Constructor

30 Jan 2009
CMPT166
Dr. Sean Ho
Trinity Western University

DogsAndCats
example

http://twu.seanho.com/09spr/cmpt166/examples/DogsAndCats

2009 Career Fair Exhibitors2009 Career Fair Exhibitors
Acts Seminaries
Adventure Teaching
African Children's Choir
Angus One Professional Recruitment
BC Corrections
BC Ferries
BC Human Resources Management

Association
BC Transit Police
Bethesda Christian Association
BOP Korea Connections
Canada Revenue Agency
Canadian Forces
Certified General Accountants
Certified Management Accountants
Communitas Supportive Care Society
Community Employment Resource

Centre
Corporate Express
Correctional Service Canada
Creative Memories
Developmental Disabilities Association
Dulay Burke Financial Recruitment

Edward Jones
EV Logistics
Fraser Health Authority
Freedom 55 Financial
Institute of Chartered Accountants

 of BC
Logos Bible Software
Kintec Footlabs
Meyers Norris Penny LLP
New Westminster Police
Northern Health
Pampered Chef
Power to Change
Retirement Concepts
Royal Bank of Canada
Royal Canadian Mounted Police
Southwestern Company
Studibudi Professional Networking Inc.
Sun Life Financial
TD Canada Trust
Township of Langley
UHY International
Vancouver Fire and Rescue Services

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 55

Review: inheritanceReview: inheritance

 “has a” vs. “is a kind of” vs. “knows how to”

 public/private/protected

 Constructors, calling superclass constructor

 Overloading functions

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 66

What's on for todayWhat's on for today

 Upcasting

 Virtual methods

 Abstract superclasses and pure virtual methods

 References, pass-by-reference, const refs

 The copy constructor

 Operator overloading

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 77

UpcastingUpcasting

 A reference to an instance of a subclass may
also be treated as an instance of the superclass

 class Dog : public Pet { …
 Dog fido

● Every Dog is also a Pet

 Pointer to fido:
 Pet* myPetPtr = &fido;

● This assignment works!
● “forgets” the object is a Dog,

only thinks of it as a generic Pet

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 88

Virtual methodsVirtual methods

 A subclass can redefine a method defined by the
superclass

● Every Pet knows how to speak()
● But Dogs speak() differently from Cats
● Subclasses overload speak()

 Flag the method as virtual in the superclass

 Late binding: which version of speak() to use?

● Decided at run-time

 Polymorphism: same code works on several
different types, all subclasses of the same parent

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 99

PolymorphismPolymorphism

 Think carefully about class hierarchy in program
design

 Write programs/algorithms to operate on
superclass objects

● As generic as possible

 Instances of subclasses can be operated on by
the algorithms without need for modification

 Dynamic method binding:

● C++ runtime chooses correct method
(e.g., speak()) from subclass

Pet

Cat

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 1010

Abstract superclassesAbstract superclasses

 Sometimes you may want to make a superclass
as a category to cover many subclasses, but
don't want to allow instantiation of superclass

 Make a pure virtual function: declare as '= 0':
 virtual void myfun() = 0;

 The compiler will prevent anyone from
instantiating this class: abstract superclass

 Subclasses will need to override this method
and provide actual bodies to the method

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 1111

References vs. pointersReferences vs. pointers

 References are like constant pointers that are
automatically dereferenced by the compiler

● Must be initialized when created
● Always refers to same object
● No such thing as a NULL reference

 Equivalent to Python alias
 int a = 5;
 int& ref = a;
 ref++; // a is now 6

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 1212

References and functionsReferences and functions

 References are often used to pass an object to
a function, or return an object from a function:

● C only has call-by-value, so use pointers:
 int a = 5;
 void dbl_me(int* x) { (*x) *= 2; }
 dbl_me(&a); // pass a pointer

● C++ allows call-by-reference:
 void dbl_me(int& x) { x *= 2; }
 dbl_me(a); // call-by-ref

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 1313

const referencesconst references

 Since a function may modify its argument if
passed by reference, it fails on const references

 void dbl_me(int& x) { x *= 2; }
 dbl_me(5); // won't work!
 const int& pi = 3;
 dbl_me(pi); // won't work!

 If we're not going to modify the argument, declare
it as a const reference:

 void dbl_me(const int& x) { cout << x; }
 dbl_me(5); // will work

 Get into a habit of making parameters const refs
unless you need to modify the argument

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 1414

The copy constructorThe copy constructor

 References are aliases: point to same object

 How about copying?

 C++ default way of copying is a low-level
bitcopy: copies pointer addresses! (shallow)

 You can define your own copy constructor:
 class MyClass {

● int attrib;
● MyClass(const MyClass& x) {

● attrib = x.attrib;
 Needed if you want to pass your object

by value! Otherwise, must pass by reference

30 Jan 200930 Jan 2009CMPT166: polymorphismCMPT166: polymorphism 1515

Operator overloading in C++Operator overloading in C++

 Just as in Python, operators may be overloaded:
define specially-named methods:

class Nation {
●int pop;

●public:
●const Nation operator+(const Nation&

n) {
●return Nation(pop + n.pop);

 Note return line instantiates a new temporary
object inline

Nation x, y;
x = x + y;

	Title Slide
	Slide 2
	2009 Career Fair Exhibitors
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

