
v2ch3: More on C++ <string>v2ch3: More on C++ <string>

4 Feb 2009
CMPT166
Dr. Sean Ho
Trinity Western University

4 Feb 20094 Feb 2009CMPT166: <string>CMPT166: <string> 22

Review: namespacesReview: namespaces

 The static keyword: two uses

● For local vars: persistent storage
● For global names: file scope

 Namespaces and using

 Class variables (static member variables)

● Application: shared data tables

 Class methods (static member functions)

● Application: singleton classes

4 Feb 20094 Feb 2009CMPT166: <string>CMPT166: <string> 33

Quiz2:Quiz2: 10 min, 20 pts10 min, 20 pts

 Define method overloading and method
overriding. What is the difference? [4]

 What is an abstract superclass, and why might
one be useful? How do you make one? [4]

 Write C++ declarations for these relationships:

● “fido is a Dog.”

● “A Dog is a kind of Mammal.”

● “Every Mammal has a Heart.”

● “Any Dog knows how to bark.”

4 Feb 20094 Feb 2009CMPT166: <string>CMPT166: <string> 44

Quiz2 answers: #1-2Quiz2 answers: #1-2

 Define method overloading and method
overriding. What is the difference? [4]

● Overloading: different versions of method,
depending on type of parameters

● Overriding: a method defined in the
superclass, overridden by subclass

 What is an abstract superclass, and why might
one be useful? [4]

● A superclass that cannot be instantiated;
write a pure virtual method (=0)

4 Feb 20094 Feb 2009CMPT166: <string>CMPT166: <string> 55

Quiz2 answers: #3Quiz2 answers: #3

 Write C++ declarations for these relationships:

● “fido is a Dog.”

● “A Dog is a kind of Mammal.”

● “Every Mammal has a Heart.”

● “Any Dog knows how to bark().”
● class Heart {};

● class Mammal { Heart h; };

● class Dog : public Mammal { void bark(); }

● Dog fido;

4 Feb 20094 Feb 2009CMPT166: <string>CMPT166: <string> 66

Initializing a C++ <string>Initializing a C++ <string>

 In C, strings are just arrays of char. Limitations?

 In C++, <string> is better: declare/initialize:
● #include <string>

● string myName = “vonWilliamson”;

 Initialize using parameter to constructor:
● string yrName(“Billy”);

 Initialize as a copy (copy constructor):
● string hisName(myName);

 Initialize from a substring (slice):
● string herName(myName, 0, 4); // first four chars

4 Feb 20094 Feb 2009CMPT166: <string>CMPT166: <string> 77

String operationsString operations

● string myName = “vonWilliamson”;

 Substring: .substr(start, length)
● myName.substr(3, 4) // “Will”

 Concatenate: +

 Insert into string: .insert(where, str)
● myName.insert(0, “Count ”) // “Count vonW...”

 Append to end: .append(str)
● myName.append(“son”) // “vonWilliamsonson”

 Remove characters: .erase(start, len)
● myName.erase(7, 3) // “vonWilson”

4 Feb 20094 Feb 2009CMPT166: <string>CMPT166: <string> 88

String ops: search/replaceString ops: search/replace

● string myName = “vonWilliamson”;

 Search for a substring: .find(str, start)

● Returns location in string
● #include <cstddef> // for size_t

● size_t idx = myName.find(“son”, 0); // 10

 If not found, find() returns string::npos
(nonexistent character position):
● if (idx == string::npos) { // couldn't find it!

 Replace: .replace(start, len, replacement)
● myName.replace(3, 7, “Ander”)

4 Feb 20094 Feb 2009CMPT166: <string>CMPT166: <string> 99

String operationsString operations

 Length of string: .length() or .size()

 Internal array dynamically resizes as needed

 Current size of internal array: .capacity()

 Force a resize to a larger size: .reserve(size)

 No functions to change case of a whole string,
but you can use Standard C++ Library
functions on individual characters:

 toupper('a')

 tolower('A')

4 Feb 20094 Feb 2009CMPT166: <string>CMPT166: <string> 1010

Lexicographic sortingLexicographic sorting

 Comparing strings lexically:
Character-by-character, using ASCII order
● “Hello World!” < “Yallo World!”

● “Hello World!” > “Hello Class!”

● “Hello World!” < “Hello world!”

● “Hello World!” > “H”

● “Hello World!” > “ Hello World!”

 More in the .compare() method

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

