
InterfacesInterfaces

13 Feb 2009
CMPT166
Dr. Sean Ho
Trinity Western University

13 Feb 200913 Feb 2009CMPT166: interfacesCMPT166: interfaces 22

Quiz 3: 15minsQuiz 3: 15mins

 Evaluate in C++: “My apple” < “MyPear” [2]

 Describe the two meanings of the static
keyword in C++. [4]

 What is a pure virtual function in C++?
How do you specify one in C++?
Why might such a function be useful? [4]

 Come up with a situation where class
inheritance would be useful.
Design a class hierarchy with a superclass and
at least two subclasses.
Sketch a UML diagram and basic C++ code. [10]

13 Feb 200913 Feb 2009CMPT166: interfacesCMPT166: interfaces 33

Quiz 3: answers #1-2Quiz 3: answers #1-2

 Evaluate in C++: “My apple” < “MyPear” [2]

● True (<space> is less than 'P')

 Describe the two meanings of the static
keyword in C++. [4]

● On global entities: local binding:
scope is limited to current file

● On local vars inside functions:
persistent storage: variable retains its
value across calls to the function

13 Feb 200913 Feb 2009CMPT166: interfacesCMPT166: interfaces 44

Quiz 3: answers #3-4Quiz 3: answers #3-4

 What is a pure virtual function in C++? [4]

● No body (=0), must be overridden by
subclasses

● Superclass container specifies that
all instances of any subclass must
implement this method

 Come up with a situation where class
inheritance would be useful.
Design a class hierarchy with a superclass and
at least two subclasses.
Sketch a UML diagram and basic C++ code. [10]

13 Feb 200913 Feb 2009CMPT166: interfacesCMPT166: interfaces 55

Multiple inheritance (arity)Multiple inheritance (arity)

 C++ allows a subclass to inherit from
more than one superclass:

class Horse { public void eat(); }

class Donkey { public void eat(); }

class Mule : public Horse, Donkey {} // both!

 How do disambiguate name collisions?

myMule.eat(); // which one?

● Specify superclass name:
myMule.Horse::eat();

 C++, Python: arity is multiple.

● Java: arity is single.

13 Feb 200913 Feb 2009CMPT166: interfacesCMPT166: interfaces 66

Review: abstract classesReview: abstract classes

 Abstract classes:

● Too generic to define a real object
 e.g., TwoDimensionalShape

● Not intended to be directly instantiated
 abstract classes have pure virtual methods:

● No body defined; each subclass must implement

 Concrete classes:

● Subclass of an abstract class, meant to be
instantiated
 e.g., Square, Circle, Triangle

13 Feb 200913 Feb 2009CMPT166: interfacesCMPT166: interfaces 77

e.g.: TwoDimensionalShapee.g.: TwoDimensionalShape

 Abstract superclass: TwoDimensionalShape

● Abstract method: draw()
class TwoDimensionalShape {

virtual void draw() = 0; // pure virtual

 Concrete subclasses: Circle, Square, Triangle

● Each provide own implementation of draw()
class Circle : public TwoDimensionalShape {

virtual void draw() { drawCircle(x, y, r); }
}

class Square : TwoDimensionalShape {

virtual void draw() { drawRect(x, y, w, h); }
}

13 Feb 200913 Feb 2009CMPT166: interfacesCMPT166: interfaces 88

Interfaces (in Java)Interfaces (in Java)

 An interface is a set of methods provided by a
class (which may implement several interfaces)

 C++ doesn't have explicit interfaces, but

 In Java: define a set of abstract methods
public interface drawableShape {

public abstract void draw();
public abstract double area();

}

 Classes implement these methods
public class Circle implements drawableShape {

public void draw() { drawOval(x, y, r, r); }
public double area() { return 2 * Math.PI * r * r; }

13 Feb 200913 Feb 2009CMPT166: interfacesCMPT166: interfaces 99

Abstract classes vs. interfacesAbstract classes vs. interfaces

 Abstract superclasses declare identity:

● “Circle is a kind of TwoDimensionalShape”
● Some languages do not allow

 multiple inheritance
● Inherit methods, attributes;

 Get protected access

 Interfaces declare capability:

● “Circles know how to be drawableShapes”
● May implement multiple interfaces
● Interfaces are not ADTs (abstract data types)

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

