
An OO Design ExerciseAn OO Design Exercise

11 Mar 2009
CMPT166
Dr. Sean Ho
Trinity Western University

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 22

Steps to OO design: wADesSteps to OO design: wADes

● (Prereq: understand client requirements)

 System behaviour

● Use-case scenarios
● User interface mockups

 Components

● Self-contained blocks with
narrow interactions

 From components to classes

● Attributes, methods

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 33

(1) System behaviour: use-case(1) System behaviour: use-case

 UML use-case diagrams show:

● The actors involved (may be nonhuman!)
● Ways in which the actors interact:

relationships,
actions,
use cases, etc.

 Example: ATM
(thanks to
 ArgoUML)

http://argouml-stats.tigris.org/documentation/printablehtml/manual/argomanual.html

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 44

Use case diagram: navigationUse case diagram: navigation

 Direction of arrows indicates which actor is
passive and which is active:

 What
direction
should the
arrows point
between
“Maintain ATM”
and
“Engineer”?

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 55

Use case diagram: multiplicityUse case diagram: multiplicity

 Numbers indicate how many instances of an
actor can be doing how many instances of the
use case

 e.g., only
allow up to 3
Bank Officials

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 66

Use case diagram: includesUse case diagram: includes

 We may need to break down each use case into
smaller chunks to implement

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 77

Specifying a use caseSpecifying a use case

 Each use case should have:

● Short name
● Goal: what does it achieve for its actors?
● Names of actor(s) involved
● Pre/post-conditions?
● Basic flow: break down into steps

(pseudocode!)
● Alternate flows: what if user inputs

something different from the usual?

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 88

Ex. use case: Withdraw CashEx. use case: Withdraw Cash

 Name: Withdraw cash

 Goal: Customer gets cash; Computer ensures
account has enough money and keeps a record

 Actors: Customer, Central Computer

 Basic flow:

● Customer selects account to withdraw from
● Customer inputs dollar amount of cash
● ATM verifies with Computer enough money
● ATM dispenses cash to Customer
● ATM prints receipt

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 99

Ex. use case: alternate flowsEx. use case: alternate flows

 How might the basic flow not work? What
might go wrong?

● input ($) too big or too small
● can't give out coins (e.g., $4)
● not enough $$$ in account
● user cancels
● no paper, or no cash, or ATM on fire
● dropped connection to Computer

 Each results in an alternate flow: how to handle
that alternate situation

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 1010

Example (midterm q. #10)Example (midterm q. #10)

 Problem statement:

Design a student enrolment database
like we have at TWU

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 1111

(1) Actors and actions(1) Actors and actions

 Use-case scenarios: actors and actions

 Who are the actors? Who will interface with us?

● .Student, Alumni, Other students/public,
Registrar, Database, Advisor, Instructor

 What are the actions? Scenarios of use?

● ask for GPA, add class, drop class, change
address, change advisor

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 1212

(1) Use-case diagrams(1) Use-case diagrams

Actor

Actor

Actor

Actor

Use-case

Use-case

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 1313

(1) UI mockup(1) UI mockup

 For each use-case (action), describe/mockup
what the user interface will be like:

● Text Q&A? Windows? Interactivity?

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 1414

(2) Component design(2) Component design

 This is often the hardest part!

 Components need not be classes

 Thinly coupled: describe all interfaces
between components

Component

Component

Component
Component

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 1515

Component:Component:

 Name: …

 Description: …

 Interface to (component):

● ...

 Interface to (component):

● ...

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 1616

Component:Component:

 Name: …

 Description: …

 Interface to (component):

● ...

 Interface to (component):

● ...

11 Mar 200911 Mar 2009CMPT166: design exerciseCMPT166: design exercise 1717

(3) From components to classes(3) From components to classes

 Each component may need several classes to
implement it

 Component: …

● Class: …
 Attributes: …
 Methods: …

● Class: …
 Attributes: …
 Methods: ...

	Title Slide
	Sample Content
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

