
Socket ProgrammingSocket Programming

16 Mar 2009
CMPT166
Dr. Sean Ho
Trinity Western University

See:
●socket/ example code
●U Illinois notes
●UWO notes
●MSDN Winsock2

http://twu.seanho.com/09spr/cmpt166/examples/socket/
http://www.rites.uic.edu/~solworth/sockets.pdf
http://www.uwo.ca/its/doc/courses/notes/socket/
http://msdn.microsoft.com/en-us/library/ms738545(VS.85).aspx

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 22

BSD socketsBSD sockets

 Sockets are a protocol-
independent way of
communicating between processes

● Foundation of the Internet, including
HTTP, FTP, IM, streaming media, etc.

 Local or Internet: same host or diff hosts?

 Connection-based or connectionless: does each
packet need to specify destination?

 Packets or streams: message boundaries?

 Reliable or unreliable: Can messages be lost,
duplicated, reordered, or corrupted?

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 33

TCP vs. UDPTCP vs. UDP

 All data on the Internet is sent via packets
conforming to the Internet Protocol (IP)

 Two most common types of packets:

● TCP: Transmission Control Protocol:
 Virtual circuit: connection-based
 Client-server model

● UDP: User Datagram Protocol:
 Connectionless: peer-to-peer, less overhead
 No guarantees about arrival, ordering,

duplication of packets

 We can create both kinds of sockets

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 44

TCP client-serverTCP client-server

 TCP is connection-based:

● Phone analogy
● Initial setup, but subsequent packets do

not need to specify destination again
● Server: waits, listens for client
● Client: initiates connection (phone call)
● Once connection is established,

communication may be two-way
(send/receive)

● Either client or server may terminate

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 55

Steps for TCP serverSteps for TCP server

 socket(): create socket (buy a phone)

 bind(): specify server port (get a phone number)

 listen(): specify length of connection queue
(call-waiting) and enable socket for listening

 accept(): wait for client and establish connection
(wait for and answer phone)

 send()/recv() (repeated): communicate
(via buffers of bytes/chars)

 shutdown(): mute or end call

 close(): release data structures

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 66

Steps for TCP clientSteps for TCP client

 socket(): create socket (buy a phone)

 connect(): connect to a server
(dial phone number)

 send()/recv() (repeated): communicate
(via buffers of bytes/chars)

 shutdown(): mute or end call

 close(): release data structures

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 77

TCP client-server diagramTCP client-server diagram

Server Client

socket
socket

bind

listen

accept close

send/recv

shutdown

close

connect

send/recv

shutdown

close

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 88

Sockets API: socket()Sockets API: socket()

 Create a new socket:
 #include <sys/types.h>
 #include <sys/socket.h>
 int socket(AF_INET, type, 0);

 Domain: AF_INET for internet or AF_LOCAL

 Type: SOCK_STREAM (connection),
SOCK_DGRAM (connectionless datagram),
SOCK_SEQPACKET (sequenced, reliable
connection; not usually available)

 Protocol: 0 chooses TCP/UDP according to type

 Returns a socket ID (akin to a file handle)

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 99

Sockets API: bind()Sockets API: bind()

 Associates a socket with an address
 int bind(sid, addrPtr, len);

 sid: socket ID (from return value of socket())

 addrPtr: pointer to the address struct
 Type: struct sockaddr*

● Structure depends on the address family
● For IP, need: IP address and port

 Type: struct sockaddr_in*

 len: size (in bytes) of *addrPtr

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 1010

Address structs: sockaddrAddress structs: sockaddr

 The address struct (addrPtr parameter) can be:

 If the address family is IP:
 struct sockaddr_in {

● sa_family_t sin_family; // AF_INET
● in_port_t sin_port; // port number
● struct in_addr sin_addr; // IP address struct

 }

 If the address family is a local Unix socket:
 struct sockaddr_un {

● uint8_t sun_length;
● short sun_family; // AF_LOCAL
● char sun_path[100]; // path/filename

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 1111

Sockets API: listen()Sockets API: listen()

 int listen(sid, size);

 Set number of pending connection requests
allowed (any incoming requests beyond this will
get rejected)

 SID: socket ID (from socket())

 size: max length of connection queue

 Typically limited by OS to only 5!

 Returns 0 on success, -1 on failure

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 1212

Sockets API: accept()Sockets API: accept()

 Blocks (waits) until a client initiates a
connection request

 int accept(sid, addrPtr, lenPtr)

 When received, creates a new connection ID
(handle) for this client

 Return value is the connection ID

 *addrPtr is the address info of the client
 struct sockaddr* addrPtr, int* lenPtr

 addrPtr or lenPtr are 0 if no client or no address
info

16 Mar 200916 Mar 2009CMPT166: socketsCMPT166: sockets 1313

How do we accept clients?How do we accept clients?

 Iterating server: only one client at a time

● One operator answering phones
● Simplest to implement

 Forking server:

● Split off a child thread for each connection
● Original master thread continues to listen
● Switchboard

 Concurrent single server:

● Use select to simultaneously wait on all
open socket IDs

14 Mar 200814 Mar 2008CMPT166: socketsCMPT166: sockets 1414

More on forking serverMore on forking server

 Multiple threads running concurrently

 Master thread listens on port

 When a client connects, fork off a thread

● Thread handles communication with that
client

 Master thread continues listening for other
connections (switchboard)

 Overhead in forking new threads: so keep pool
of available threads, and reuse dormant threads

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

