
Networks: DNS, byte orderingNetworks: DNS, byte ordering

20 Mar 2009
CMPT166
Dr. Sean Ho
Trinity Western University

See:
●socket/ example code

http://twu.seanho.com/09spr/cmpt166/examples/socket/

20 Mar 200920 Mar 2009CMPT166: networks, DNSCMPT166: networks, DNS 22

Review last time: networksReview last time: networks

 OSI 7-layer model of networks

 IP addresses, subnets

● NAT
● IPv6

20 Mar 200920 Mar 2009CMPT166: networks, DNSCMPT166: networks, DNS 33

Reserved IP addressesReserved IP addresses

 Special reserved IP addresses:

● Private: 192.168.*/16, 172.16.*/12, 10.*/8
● Broadcast: send to whole subnet

 e.g., 192.168.1.255 floods 192.168.1/24
 255.255.255.255: limited broadcast to LAN

● Multicast: 224.0.0.0 – 239.255.255.255
 Each addr represents a group of listeners
 Hosts may subscribe to a multicast address

● Localhost: 127.*/8, e.g., 127.0.0.1
 Same host that we're running on

20 Mar 200920 Mar 2009CMPT166: networks, DNSCMPT166: networks, DNS 44

From names to numbers: DNSFrom names to numbers: DNS

 Want to say “twu.ca” instead of 64.114.134.52

 Top-level domains: .com, .org, .ca, etc.

 DNS (Domain Name System):

● Query local server for host's IP address
 May return several IP addresses!
 Also info on mail server, owner, etc.

● Authoritative for its own domain
● If it doesn't know, it asks other servers

 Which may tell it which server to ask

● Root servers: [a-m].root-servers.net

20 Mar 200920 Mar 2009CMPT166: networks, DNSCMPT166: networks, DNS 55

DNS lookup: gethostbyname()DNS lookup: gethostbyname()

 #include <netdb.h>
 struct hostent* myDNS =

gethostbyname(“www.twu.ca”);

 Returns DNS record as a hostent struct:

● h_name (char*): the canonical name
● h_aliases (char**): other aliases (array)
● h_addrtype (int): AF_INET
● length (int): 4 bytes for IPv4
● h_addr_list (struct in_addr**): IP addrs
● h_addr (in_addr*): pick one IP address

 Only for IPv4! See getaddrinfo() for IPv6

http://www.twu.ca/

20 Mar 200920 Mar 2009CMPT166: networks, DNSCMPT166: networks, DNS 66

PortsPorts

 A socket needs both an IP address and a port

 Ports 0 – 1023 are reserved for specific uses

● 53:dns, 80:http, 587:smtp submit, etc.

 Ports 1024 – 49151 are registered but free

● Open, but register with an ICANN registrar
to ensure interoperation with other apps

● /etc/services for a list

 Ports 49152 – 65535 are dynamic for everyone

● Often used for outgoing client connections

20 Mar 200920 Mar 2009CMPT166: networks, DNSCMPT166: networks, DNS 77

Network byte orderNetwork byte order

 Age-old problem: how to store multi-byte nums?

 Little-endian: least-significant byte (LSB) first

● (hex) 1 E → 1(1) + 14(16) = 225
● Intel CPUs

 Big-endian: most-significant byte (MSB) first

● (hex) 1 E → 1(16) + 14(1) = 30
● Matches how we write numbers
● PowerPC, Sun Sparc, ARM (configurable)

 Network byte order (e.g., headers) is big-endian

20 Mar 200920 Mar 2009CMPT166: networks, DNSCMPT166: networks, DNS 88

Byte swapping functionsByte swapping functions

 Functions to convert between:
host byte ordering and network byte ordering

● For shorts (16bit) or longs (32bit)

 Host to network, for shorts:

● uint_16t htons(uint_16t v);
 serverAddr.sin_port = htons(4410);

 Network to host, for longs:

● uint_32t ntohl(uint_32t v);

 etc.: htons(), htonl(), ntohs(), ntohl()

20 Mar 200920 Mar 2009CMPT166: networks, DNSCMPT166: networks, DNS 99

String display of IP addressesString display of IP addresses

 IP addresses are stored as struct in_addr:

● 4 bytes (1 unsigned long int)

 Not same as the string: “64.114.134.52”!
 #include <arpa/inet.h>
 struct in_addr serverIP;

 ASCII string to numeric (struct in_addr):
 inet_aton(“64.114.134.52”, &serverIP);

● Beware octal: 226.0.0.037 => 226.0.0.31!

 Numeric to ASCII:
 cout << inet_ntoa(serverIP);

20 Mar 200920 Mar 2009CMPT166: networks, DNSCMPT166: networks, DNS 1010

Sockets and FLTKSockets and FLTK

 Sockets are straight C and built-in to the OS

● Cygwin/Linux: g++ client.cpp -o client.exe

 Theoretically, no problems mixing with FLTK

 BUT: synchronous communication blocks while
waiting for the other side

● e.g., server waiting for client to connect
● e.g., waiting to receive message

 Program will appear to hang,
display won't even refresh!

 Solution: multithreading

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

