
Intro to POSIX ThreadsIntro to POSIX Threads
with FLTKwith FLTK

25 Mar 2009
CMPT166
Dr. Sean Ho
Trinity Western University

See:
●FlChat/ example code

http://twu.seanho.com/09spr/cmpt166/examples/FlChat/

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 22

Threads and parallelismThreads and parallelism

 Threads are lightweight processesprocesses

 Threads allow concurrency

● Make use of multiple processors
● But still useful even on uniprocessor

 Threads use shared memory

● Synchronization issues
for shared objects

 Thread-safe code?

● May also have
local (private) variables

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 33

Parallel program modelsParallel program models

 How to divide work amongst threads?

 Master/worker:
master thread assigns work to worker threads

● Master typically handles UI, input
● Static or dynamic worker pool

 Coworkers: all threads are peers:

● Main thread participates in doing work

 Pipeline: each thread works on a different part
of the task: e.g., automobile assembly line

● Function parallelism vs. data parallelism

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 44

Threads model: PThreadsThreads model: PThreads

 POSIX threading: fork/join model

 Start with parent thread (main program)

 Create child thread(s):

● Specify a callback for the child to execute
● Optional parameter to callback: (void*)
● Shared memory access to same data
● Children may send messages to parent

 May trigger parent to execute a callback

● Child threads exit when callback finished

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 55

PThreads APIPThreads API

 pthread_create():

● Parent calls this to start new child
● Specify start function for child to run

 pthread_exit():

● Signals this thread is done
● Implicit at end of child's start function

 pthread_join():

● Parent calls to wait for result from a child

 pthread_self(): returns my thread ID (pthread_t)

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 66

PThreads: get results from childPThreads: get results from child

 Thread callbacks are subroutines declared to
return void* and take one void* parameter

 void* workerThread(void* d) { … }

 Parent may pass any user data to child via the
void* parameter

 Child may pass user data back to parent via the
void* return value

 Parent calls pthread_join() to wait for child to
finish and fetch child's returned data

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 77

PThreads vs Windows threadsPThreads vs Windows threads

 PThreads (POSIX threads) are a standard:
 #include <pthread.h>

 But Windows has its own threading library:
 #include <process.h>

 FLTK provides a small wrapper around both:
 #include “fl_threads.h”
 fl_create_thread(tid, callback, userdata);

● Fl_Thread tid lets parent track child
● callback is function for child to execute
● userdata (optional) is passed to callback

http://twu.seanho.com/09spr/cmpt166/examples/fl_threads.h

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 88

Issues with threads: lockingIssues with threads: locking

 Big problem whenever we have concurrent
threads accessing shared data: data corruption

● e.g., threads == children playing;
shared resources == toys/blocks

 Mutual exclusion (mutex): only one
thread accesses shared object at a time

 Locks: a way to implement mutex
 Thread asks for lock before modifying object
 If it gets the lock, it can modify
 If not, wait (block) until the lock is freed
 Free the lock when done modifying

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 99

Problem with locks: deadlockProblem with locks: deadlock

 Shared resources A, B
each have own lock

 Thread 1 locks A,
then asks to lock B

 Thread 2 locks B,
then asks to lock A

 → both threads
hang forever! Deadlocked

 → be careful with locks;
only hold lock for
minimum time needed

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 1010

Locking in FLTKLocking in FLTK

 FLTK provides one global lock so that multiple
threads won't change the GUI simultaneously

 First call Fl::lock() in main() to enable threads

 Then before a thread modifies any shared
object:

 Fl::lock();
 myWindow->show(); // or other shared
 Fl::unlock();

 See FLTK doc ch10.

http://www.fltk.org/doc-1.1/advanced.html

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 1111

When to use Fl::lock()When to use Fl::lock()

 Before a shared resource is modified

● e.g., both parent and child want to write
to a string buffer

 Before any FLTK windowing operation

● show()/hide()
● timers (fl_add_timeout())
● changing window decorations
● In general, only the parent thread should

do these

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 1212

Fl::awake()Fl::awake()

 Children can send messages to the parent:
 void* msgToParent;
 Fl::awake(msgToParent);

 Parent (doing main FL event loop) checks for
messages with

 void* msgFrChild = Fl::thread_message();

 Message may be pointer to any object (void*)

 Child may also ask parent to run a callback:
 void* runMe(void* u) { … }
 Fl::awake(runMe, userdata);

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 1313

Example code: Example code: FlChatFlChat

 Each of client and server has its own UI and
main class: Client, ClientUI, Server, ServerUI

 ServerUI: creates Server object and initializes

● Splits off a thread to wait and listen

 ClientUI: creates Client object

● Upon connect, splits thread to receive

 This is still a serial server:

● Can't handle multiple simultaneous clients
● Extension: use threads to do switchboard

http://twu.seanho.com/09spr/cmpt166/examples/FlChat/

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

