
Intro to POSIX ThreadsIntro to POSIX Threads
with FLTKwith FLTK

25 Mar 2009
CMPT166
Dr. Sean Ho
Trinity Western University

See:
●FlChat/ example code

http://twu.seanho.com/09spr/cmpt166/examples/FlChat/

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 22

Threads and parallelismThreads and parallelism

 Threads are lightweight processesprocesses

 Threads allow concurrency

● Make use of multiple processors
● But still useful even on uniprocessor

 Threads use shared memory

● Synchronization issues
for shared objects

 Thread-safe code?

● May also have
local (private) variables

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 33

Parallel program modelsParallel program models

 How to divide work amongst threads?

 Master/worker:
master thread assigns work to worker threads

● Master typically handles UI, input
● Static or dynamic worker pool

 Coworkers: all threads are peers:

● Main thread participates in doing work

 Pipeline: each thread works on a different part
of the task: e.g., automobile assembly line

● Function parallelism vs. data parallelism

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 44

Threads model: PThreadsThreads model: PThreads

 POSIX threading: fork/join model

 Start with parent thread (main program)

 Create child thread(s):

● Specify a callback for the child to execute
● Optional parameter to callback: (void*)
● Shared memory access to same data
● Children may send messages to parent

 May trigger parent to execute a callback

● Child threads exit when callback finished

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 55

PThreads APIPThreads API

 pthread_create():

● Parent calls this to start new child
● Specify start function for child to run

 pthread_exit():

● Signals this thread is done
● Implicit at end of child's start function

 pthread_join():

● Parent calls to wait for result from a child

 pthread_self(): returns my thread ID (pthread_t)

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 66

PThreads: get results from childPThreads: get results from child

 Thread callbacks are subroutines declared to
return void* and take one void* parameter

 void* workerThread(void* d) { … }

 Parent may pass any user data to child via the
void* parameter

 Child may pass user data back to parent via the
void* return value

 Parent calls pthread_join() to wait for child to
finish and fetch child's returned data

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 77

PThreads vs Windows threadsPThreads vs Windows threads

 PThreads (POSIX threads) are a standard:
 #include <pthread.h>

 But Windows has its own threading library:
 #include <process.h>

 FLTK provides a small wrapper around both:
 #include “fl_threads.h”
 fl_create_thread(tid, callback, userdata);

● Fl_Thread tid lets parent track child
● callback is function for child to execute
● userdata (optional) is passed to callback

http://twu.seanho.com/09spr/cmpt166/examples/fl_threads.h

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 88

Issues with threads: lockingIssues with threads: locking

 Big problem whenever we have concurrent
threads accessing shared data: data corruption

● e.g., threads == children playing;
shared resources == toys/blocks

 Mutual exclusion (mutex): only one
thread accesses shared object at a time

 Locks: a way to implement mutex
 Thread asks for lock before modifying object
 If it gets the lock, it can modify
 If not, wait (block) until the lock is freed
 Free the lock when done modifying

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 99

Problem with locks: deadlockProblem with locks: deadlock

 Shared resources A, B
each have own lock

 Thread 1 locks A,
then asks to lock B

 Thread 2 locks B,
then asks to lock A

 → both threads
hang forever! Deadlocked

 → be careful with locks;
only hold lock for
minimum time needed

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 1010

Locking in FLTKLocking in FLTK

 FLTK provides one global lock so that multiple
threads won't change the GUI simultaneously

 First call Fl::lock() in main() to enable threads

 Then before a thread modifies any shared
object:

 Fl::lock();
 myWindow->show(); // or other shared
 Fl::unlock();

 See FLTK doc ch10.

http://www.fltk.org/doc-1.1/advanced.html

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 1111

When to use Fl::lock()When to use Fl::lock()

 Before a shared resource is modified

● e.g., both parent and child want to write
to a string buffer

 Before any FLTK windowing operation

● show()/hide()
● timers (fl_add_timeout())
● changing window decorations
● In general, only the parent thread should

do these

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 1212

Fl::awake()Fl::awake()

 Children can send messages to the parent:
 void* msgToParent;
 Fl::awake(msgToParent);

 Parent (doing main FL event loop) checks for
messages with

 void* msgFrChild = Fl::thread_message();

 Message may be pointer to any object (void*)

 Child may also ask parent to run a callback:
 void* runMe(void* u) { … }
 Fl::awake(runMe, userdata);

25 Mar 200925 Mar 2009CMPT166: POSIX threadsCMPT166: POSIX threads 1313

Example code: Example code: FlChatFlChat

 Each of client and server has its own UI and
main class: Client, ClientUI, Server, ServerUI

 ServerUI: creates Server object and initializes

● Splits off a thread to wait and listen

 ClientUI: creates Client object

● Upon connect, splits thread to receive

 This is still a serial server:

● Can't handle multiple simultaneous clients
● Extension: use threads to do switchboard

http://twu.seanho.com/09spr/cmpt166/examples/FlChat/

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

