Unit Testing

More reading:
C++ text vol2 ch2,
UMD lecture,

27 Mar 2009 Meyer article on Ariane5s

CMPT166
Dr. Sean Ho
Trinity Western University

L
TRINITY
WVWESTERMN
 LINNVERSITY

http://twu.seanho.com/09spr/cmpt166/ticpp2/#_Toc53985643
http://www.cs.umd.edu/class/fall2006/cmsc433/
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html

Review of last time: PThreads

® Thread model: shared memory
® Programming models:
Master-worker, coworkers, pipeline
m PThreads: create, exit, join
3 args to create: ID, callback, argument
Getting results from a child
m Locks, deadlock
with FLTK: Fl::lock/unlock()

m Threads in FLTK: Fl::awake()

0
TRINITY
VAFSTFRM

L LINIVERSITY CMPT166: unit testing 27 Mar 2009

Designing, not hacking

® Good, complex software is not easy!

A Rfefezence
or the S
Rest of Us!
FREE eTips at dummies.com*

m A little more time spent designing
saves a lot more time debugging:

Requirements

+ Use-case scenarios
+ Pre/post-conditions

Component design
Class hierarchy
Class design

... then fill in the code!

2 TRINITY

“ WESTERN N)
W ININFRSITY CMPT166: unit testing 27 Mar 2009

Complete software life-cycle

code

DEFINE

; N
- coDING CODE STP:T lfa 3 t e St
design ey STANDARDS ANALYSIS

UNIT -

DEFINE TEST

FUNCTIONALITY _ :
REQUIREMENTS Q D E V@ { INTEGRATE
Q o,

REGRESSION
DEFINE Ty s

)
BUSINESS
o

REQUIREMENTS
FUNCTIONAL

O
ANALYZE g TEST
N

BUSINESS S

NEED \90 }\.@

ANALYZE LOAD & @

FUNCTIONALITY b, NY\N STRESS TEST

& PERFORMANGE INTEGRATION
DIAGNOSE TEST

iNni MONITOR
SC rutlnlze ﬁ APF#E;'_I’ION

start

4

W Sys-con.com

V TRINITY
WESTFRN

W ININFRSITY CMPT166: unit testing 27 Mar 2009

http://linux.sys-con.com/node/38280

How to ensure your code works?

® How do we usually make sure our program is
doing the right thing?

m Stare at the code and convince yourself it works
Easy to miss errors
Easy to be lazy!
“Tunnel vision” — same person codes+tests
® Prove that it is correct
Very difficult; not always possible
m Ship it first and wait for customers to complain
0 Not very nice!

TRINITY
WESTFRN

W ININFRSITY CMPT166: unit testing 27 Mar 2009

Ensuring your code works

m Testing!
® Design your software with testing in mind:
Catch bugs early on
Easier development process
Better design, higher-quality code
Easier to maintain/upgrade
® Ensures your program does what it's supposed to
®m Ensures you know what it's supposed to do!
m Testing + coding is faster than just coding

2 TRINITY

WESTFRN

W ININFRSITY CMPT166: unit testing 27 Mar 2009 6

Unit testing: testing at all levels

® Modular design:
break large task down
SUEIERENE

Functional
Units

® Smallest granularity:
C++ functions, or
even lines of code

Sub Functional
Units

Screens/Ul/
Outputs

G
r
a
n
u
I
a
r
i
t
y

Program
Units

S == J30 —=03C M

m Smaller granularity
modules have e
less functionality, Units
but are easier to test

m Make sure each unit works!

2 TRINITY

“ WVWESTERN R i
W ININFRSITY CMPT166: unit testing 27 Mar 2009 7

Unit tests vs. integration tests

m Unit testing tests each component in isolation

At high levels, units may be
whole programs (e.qg., client vs. server)

At low levels, units may be individual
classes or methods (e.g., disconnect())

® [ntegration testing tests whether all the
components interact correctly with each other

Very high level, coarse granularity
Often harder to design the tests

Assumes each component works properly

2 TRINITY

WESTFRN

W ININFRSITY CMPT166: unit testing 27 Mar 2009

Coding to a contract

® The requirements for a unit form its contract:
Preconditions, postconditions
Promise to whoever interacts with it

m Test against the contract:
You can write tests before you code!

m Design to the contract (Bertrand Meyer, Airaneb)
Structure the code to satisfy the contract

m Code to the contract:
Test as you code to ensure correctness

2 TRINITY

WESTFRN

W ININFRSITY CMPT166: unit testing 27 Mar 2009

http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html

Arianeb5 case

Rij f » LA
el -l |
i TE o [T i ki
ik B el |
|‘I R ,i
. Kk e
I‘I'b : '|1 . I E

® June 4, 1996: maiden fIigh’E o] E§ Airahé5 space
launch vehicle: self-destructs after 40sec

Estimated cost: $500 million USD (uninsured)
m Autopilot correcting for illusory severe off-course

Both redundant inertial guidance systems had
shut down and were spewing error messages

Overflow when converting big number
from 64-bit long to 16-bit short

® The real error: reusing code from Ariane4 that
had no preconditions

Xy ® €.9., “ensure value fits in a 16-bit short”

VWESTER N

 LINIFRSITY CMPT166: unit testing 27 Mar 2009 10

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://www.around.com/ariane.html

Example contracts: Stack

m Stack that takes any type object:

+ template <typename Elt> class Stack {
public:

m push() method with pre/post-conditions:

¢ Elt push(Elt item);
¢ /[pre: none. post: item is at top of stack

= pop() method:

+ Elt pop();
+ /[pre: stack has at least one item

¢ // post: returns top item from stack;

top item is removed from stack
}JJ TRINITY
VWESTFR M

L LINIVERSITY CMPT166: unit testing 27 Mar 2009

Testing against the contract

m Black-box testing:
don't know/care how the unit is implemented

Information hiding: cf. library: *.h vs. *.cpp
m Test cases can be written just from the contract
m Tester and coder may be different people
In fact, it's better if they are!
Implementation may change; if the
contract is same, the tests can be same

test test
5 i q component ﬁ results
2

TRINITY
WESTFRN

W ININFRSITY CMPT166: unit testing 27 Mar 2009 12

When to write tests

®m As soon as you have a contract

m Before you start to code (helps clarify design)

®m As you code (code a chunk, test a chunk)

m Right after you code (instant gratification)

® Do NOT wait until the whole program is done!
You will run out of time or motivation

Testing Is a design aid -
it helps you desigh more modular code

2 TRINITY

WESTFRN

W ININFRSITY CMPT166: unit testing 27 Mar 2009

13

Assertions

m Automated testing: write code to test your code

® One way to express test cases is by assertions:
¢ #include <cassert>
m assert(): tests a given Boolean expression
¢ assert(size > 0);
Prints error message if assertion fails

® Don't change program state in an assertion!

m Set NDEBUG macro to disable asserts
¢ #define NDEBUG // disable tests

”» Or compile with: g++ -DNDEBUG
: TRINITY
WESTFRN

L LINIVERSITY CMPT166: unit testing 27 Mar 2009 14

Testing the test code

m Test code may be buggy, too!

m Test it by deliberately breaking your program
code and seeing if the tests catch it

B Example: AssertTest.cpp
Simple stack using <vector>
g++ AssertlTest.cpp -0 AssertTest.exe

0
TRINITY
VAFSTFRM

W ININFRSITY CMPT166: unit testing 27 Mar 2009

15

http://twu.seanho.com/cmpt166/examples/AssertTest.cpp

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

