
Unit TestingUnit Testing

27 Mar 2009
CMPT166
Dr. Sean Ho
Trinity Western University

More reading:
C++ text vol2 ch2,
UMD lecture,
Meyer article on Ariane5

http://twu.seanho.com/09spr/cmpt166/ticpp2/#_Toc53985643
http://www.cs.umd.edu/class/fall2006/cmsc433/
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 22

Review of last time: PThreadsReview of last time: PThreads

 Thread model: shared memory

 Programming models:

● Master-worker, coworkers, pipeline

 PThreads: create, exit, join

● 3 args to create: ID, callback, argument
● Getting results from a child

 Locks, deadlock

● with FLTK: Fl::lock/unlock()

 Threads in FLTK: Fl::awake()

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 33

Designing, not hackingDesigning, not hacking

 Good, complex software is not easy!

 A little more time spent designing
saves a lot more time debugging:

● Requirements
 Use-case scenarios
 Pre/post-conditions

● Component design
● Class hierarchy
● Class design
● … then fill in the code!

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 44

Complete software life-cycleComplete software life-cycle

sys-con.com

start

code

test

scrutinize

design

http://linux.sys-con.com/node/38280

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 55

How to ensure your code works?How to ensure your code works?

 How do we usually make sure our program is
doing the right thing?

 Stare at the code and convince yourself it works

● Easy to miss errors
● Easy to be lazy!
● “Tunnel vision” – same person codes+tests

 Prove that it is correct

● Very difficult; not always possible

 Ship it first and wait for customers to complain

● Not very nice!

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 66

Ensuring your code worksEnsuring your code works

 Testing!

 Design your software with testing in mind:

● Catch bugs early on
● Easier development process
● Better design, higher-quality code
● Easier to maintain/upgrade

 Ensures your program does what it's supposed to

 Ensures you know what it's supposed to do!

 Testing + coding is faster than just coding

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 77

Unit testing: testing at all levelsUnit testing: testing at all levels

 Modular design:
break large task down into
smaller tasks

 Smallest granularity:
C++ functions, or
even lines of code

 Smaller granularity
modules have
less functionality,
but are easier to test

 Make sure each unit works!

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 88

Unit tests vs. integration testsUnit tests vs. integration tests

 Unit testing tests each component in isolation

● At high levels, units may be
whole programs (e.g., client vs. server)

● At low levels, units may be individual
classes or methods (e.g., disconnect())

 Integration testing tests whether all the
components interact correctly with each other

● Very high level, coarse granularity
● Often harder to design the tests
● Assumes each component works properly

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 99

Coding to a contractCoding to a contract

 The requirements for a unit form its contract:

● Preconditions, postconditions
● Promise to whoever interacts with it

 Test against the contract:

● You can write tests before you code!

 Design to the contract (Bertrand Meyer, Airane5)

● Structure the code to satisfy the contract

 Code to the contract:

● Test as you code to ensure correctness

http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1010

Ariane5 caseAriane5 case

 June 4, 1996: maiden flight of ESA Airane5 space
launch vehicle: self-destructs after 40sec

● Estimated cost: $500 million USD (uninsured)

 Autopilot correcting for illusory severe off-course

● Both redundant inertial guidance systems had
shut down and were spewing error messages

● Overflow when converting big number
from 64-bit long to 16-bit short

 The real error: reusing code from Ariane4 that
had no preconditions

● e.g., “ensure value fits in a 16-bit short”

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://www.around.com/ariane.html

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1111

Example contracts: StackExample contracts: Stack

 Stack that takes any type object:
 template <typename Elt> class Stack {

public:

 push() method with pre/post-conditions:
 Elt push(Elt item);
 // pre: none. post: item is at top of stack

 pop() method:
 Elt pop();
 // pre: stack has at least one item
 // post: returns top item from stack;

top item is removed from stack

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1212

Testing against the contractTesting against the contract

 Black-box testing:
don't know/care how the unit is implemented

● Information hiding: cf. library: *.h vs. *.cpp

 Test cases can be written just from the contract

 Tester and coder may be different people

● In fact, it's better if they are!
● Implementation may change; if the

contract is same, the tests can be same

componenttest
cases

test
results

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1313

When to write testsWhen to write tests

 As soon as you have a contract

 Before you start to code (helps clarify design)

 As you code (code a chunk, test a chunk)

 Right after you code (instant gratification)

 Do NOT wait until the whole program is done!

● You will run out of time or motivation
● Testing is a design aid –

it helps you design more modular code

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1414

AssertionsAssertions

 Automated testing: write code to test your code

 One way to express test cases is by assertions:
 #include <cassert>

 assert(): tests a given Boolean expression
 assert(size > 0);

● Prints error message if assertion fails

 Don't change program state in an assertion!

 Set NDEBUG macro to disable asserts
 #define NDEBUG // disable tests

● Or compile with: g++ -DNDEBUG

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1515

Testing the test codeTesting the test code

 Test code may be buggy, too!

 Test it by deliberately breaking your program
code and seeing if the tests catch it

 Example: AssertTest.cpp

● Simple stack using <vector>
● g++ AssertTest.cpp -o AssertTest.exe

http://twu.seanho.com/cmpt166/examples/AssertTest.cpp

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

