
Unit TestingUnit Testing

27 Mar 2009
CMPT166
Dr. Sean Ho
Trinity Western University

More reading:
C++ text vol2 ch2,
UMD lecture,
Meyer article on Ariane5

http://twu.seanho.com/09spr/cmpt166/ticpp2/#_Toc53985643
http://www.cs.umd.edu/class/fall2006/cmsc433/
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 22

Review of last time: PThreadsReview of last time: PThreads

 Thread model: shared memory

 Programming models:

● Master-worker, coworkers, pipeline

 PThreads: create, exit, join

● 3 args to create: ID, callback, argument
● Getting results from a child

 Locks, deadlock

● with FLTK: Fl::lock/unlock()

 Threads in FLTK: Fl::awake()

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 33

Designing, not hackingDesigning, not hacking

 Good, complex software is not easy!

 A little more time spent designing
saves a lot more time debugging:

● Requirements
 Use-case scenarios
 Pre/post-conditions

● Component design
● Class hierarchy
● Class design
● … then fill in the code!

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 44

Complete software life-cycleComplete software life-cycle

sys-con.com

start

code

test

scrutinize

design

http://linux.sys-con.com/node/38280

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 55

How to ensure your code works?How to ensure your code works?

 How do we usually make sure our program is
doing the right thing?

 Stare at the code and convince yourself it works

● Easy to miss errors
● Easy to be lazy!
● “Tunnel vision” – same person codes+tests

 Prove that it is correct

● Very difficult; not always possible

 Ship it first and wait for customers to complain

● Not very nice!

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 66

Ensuring your code worksEnsuring your code works

 Testing!

 Design your software with testing in mind:

● Catch bugs early on
● Easier development process
● Better design, higher-quality code
● Easier to maintain/upgrade

 Ensures your program does what it's supposed to

 Ensures you know what it's supposed to do!

 Testing + coding is faster than just coding

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 77

Unit testing: testing at all levelsUnit testing: testing at all levels

 Modular design:
break large task down into
smaller tasks

 Smallest granularity:
C++ functions, or
even lines of code

 Smaller granularity
modules have
less functionality,
but are easier to test

 Make sure each unit works!

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 88

Unit tests vs. integration testsUnit tests vs. integration tests

 Unit testing tests each component in isolation

● At high levels, units may be
whole programs (e.g., client vs. server)

● At low levels, units may be individual
classes or methods (e.g., disconnect())

 Integration testing tests whether all the
components interact correctly with each other

● Very high level, coarse granularity
● Often harder to design the tests
● Assumes each component works properly

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 99

Coding to a contractCoding to a contract

 The requirements for a unit form its contract:

● Preconditions, postconditions
● Promise to whoever interacts with it

 Test against the contract:

● You can write tests before you code!

 Design to the contract (Bertrand Meyer, Airane5)

● Structure the code to satisfy the contract

 Code to the contract:

● Test as you code to ensure correctness

http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1010

Ariane5 caseAriane5 case

 June 4, 1996: maiden flight of ESA Airane5 space
launch vehicle: self-destructs after 40sec

● Estimated cost: $500 million USD (uninsured)

 Autopilot correcting for illusory severe off-course

● Both redundant inertial guidance systems had
shut down and were spewing error messages

● Overflow when converting big number
from 64-bit long to 16-bit short

 The real error: reusing code from Ariane4 that
had no preconditions

● e.g., “ensure value fits in a 16-bit short”

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://www.around.com/ariane.html

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1111

Example contracts: StackExample contracts: Stack

 Stack that takes any type object:
 template <typename Elt> class Stack {

public:

 push() method with pre/post-conditions:
 Elt push(Elt item);
 // pre: none. post: item is at top of stack

 pop() method:
 Elt pop();
 // pre: stack has at least one item
 // post: returns top item from stack;

top item is removed from stack

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1212

Testing against the contractTesting against the contract

 Black-box testing:
don't know/care how the unit is implemented

● Information hiding: cf. library: *.h vs. *.cpp

 Test cases can be written just from the contract

 Tester and coder may be different people

● In fact, it's better if they are!
● Implementation may change; if the

contract is same, the tests can be same

componenttest
cases

test
results

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1313

When to write testsWhen to write tests

 As soon as you have a contract

 Before you start to code (helps clarify design)

 As you code (code a chunk, test a chunk)

 Right after you code (instant gratification)

 Do NOT wait until the whole program is done!

● You will run out of time or motivation
● Testing is a design aid –

it helps you design more modular code

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1414

AssertionsAssertions

 Automated testing: write code to test your code

 One way to express test cases is by assertions:
 #include <cassert>

 assert(): tests a given Boolean expression
 assert(size > 0);

● Prints error message if assertion fails

 Don't change program state in an assertion!

 Set NDEBUG macro to disable asserts
 #define NDEBUG // disable tests

● Or compile with: g++ -DNDEBUG

27 Mar 200927 Mar 2009CMPT166: unit testingCMPT166: unit testing 1515

Testing the test codeTesting the test code

 Test code may be buggy, too!

 Test it by deliberately breaking your program
code and seeing if the tests catch it

 Example: AssertTest.cpp

● Simple stack using <vector>
● g++ AssertTest.cpp -o AssertTest.exe

http://twu.seanho.com/cmpt166/examples/AssertTest.cpp

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

