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Review last time: creational

m Design patterns:
Reusable templates for designing programs
May be very high-level, indep. of prog. language

m Creational patterns
Factory method
Abstract factory
Builder
Prototype
Singleton
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Structural patterns

m Adapter/ wrapper: Convert the interface of a class
Into another interface clients expect

m Bridge: split abstraction from implementation
m Composite: organize objects into trees

m Decorator: dynamically add responsibilities /
functionality to an object

m Facade: hide complexities behind simple interface

m Flyweight: use sharing to support large numbers
of fine-grained objects efficiently

® Proxy: surrogate/placeholder for another object
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Structural pattern: Adapte

= Convert interface of a class so that two e .
iIncompatible classes can work together gl

m Like converting 3-prong plug to 2-prong socket
or impedance matching electrical signals

® e.g., buy prepackaged software system,
get it working with your
existing system

tRequest(]

m e.g., ClassClimate —»
TWU Student Portal

adp
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Structural pattern: Bridge

m Decouple an abstraction from its implementation
so that the two can vary independently

® e.qg., light switch abstract concept vs.
iImplementation of kinds of switches

(client)—>@bstr:ctio@—>@mple|rentoa
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Structural pattern: Composite

m Tree structure for objects: treat individual
objects and composites in the same way

m e.qg., file directories have entries, each of which
may themselves be directories

B e.g., expression trees

<<intarfaces>>
Component

traverse()

A A

Craverse) | [ traverse)
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Structural pattern: Decorator

® Dynamically add functionality to an object

m Use a wrapper around the object to hide core

® Wrapper may be subclassed
to add functionality

= Decorating a Christmas tree
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Structural pattern: Facade

® Provide a unified interface to a set of interfaces
In @ subsystem

High-level interface: system is easier to use

e.g., web front-end to complex database:
+ want minimal number of widgets, input boxes

user

/(mEEil

complex subsystem
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Structural pattern: Flyweight

m Use sharing to support lots of “small” objects

® \When more objects needed, draw from
shared pool on demand

m e.g., multithreaded server:

pool of threads —

+GatFlyweight(in key} +Operation(in extrinsicState)

. e g array Of i'ﬂ"‘-\'Ei;:lhts[l-:.E'-'] exists ™,
bank teIIers - e eing e

create new fiyweight
add to pool of lyweights
return new flyweight

+Dperation{in extrinsicStata)
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Structural pattern: Proxy

m Surrogate for the real object

m Control access to the real object, but still let
clients think they are talking directly to it

m Use superclass over both real object and proxy
me.qg., proxy HTTP server

® e.g., bank cheque

. ‘TOVNVUNITY _BARK
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Structural patterns

m Adapter/ wrapper: Convert the interface of a class
Into another interface clients expect

m Bridge: split abstraction from implementation
m Composite: organize objects into trees

m Decorator: dynamically add responsibilities /
functionality to an object

m Facade: hide complexities behind simple interface

m Flyweight: use sharing to support large numbers
of fine-grained objects efficiently

® Proxy: surrogate/placeholder for another object
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Behavioural patterns

m Chain of responsibility: avoid coupling sender
directly to receiver by passing through chain

B Command: make requests into objects
m |terator: access all elements of a collection

m Mediator: object encapsulating the interactions
of a set of objects: promotes loose coupling

m Observer: decouple viewers from the subject

m (also: Interpreter, Memento, State, Strategy,
Template Method, Visitor)
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Behavior: Chain of responsibility

}IJ? TRIMITY

®m Decouple sender from receiver by passing
request along a chain of intermediate handlers

® Chain may be reconfigured dynamically
® Single pipeline, but many possible handlers
® e.g., coin passing through vending machine

my boss)-»(Z“d level mngegional mgr)>

vice president

CEO )
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Behavioural pattern: Command

®m Encapsulate a request as an object
m cf. C++ function objects, callbacks
m Specify: object, method, arguments
® e.g., meal order at restaurant

._ callback
interface

Customer O dex W 'I.ltl exa
(Client) (Command) {Invo

concrete >( ;
PlaceOrder() recelver)
Cook() callback / \
— (concrete)
""f"*‘ TRINITY callback
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Behavioural pattern: Iterator

m Abstract interface to traverse a collection
®m Hide how the collection is stored
m Client interface: first, next, isDone

m e.g., secretary knows her own filing system;
boss only needs ask for “next document”

O PythOn fOr IOOp Aggragate
through dictionaries: [ _
; +Next()
Order irrelevant
ConcreteAggregate 3 oncretelterator
J,Jf e +Createlteraton]} <
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Behavioural pattern: Mediator

#? TINITY w/o0 mediator with mediator

® Simplify many-to-many relationships with one
central object that all actors interact with

Loose coupling of peers

m Encapsulate many interactions (e.g., methods)
into one obje :

USERS

T
GRAUPS

MAPPIAG
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Behavioural pattern: Observer

® One-to-many dependency between objects so
that when the subject changes state,
all its observers are notified and updated

e.g., many students checking TWU website
for snow closures

e.g., server message “send to all” clients

subject
€bserve) €bserv9 GbserveD
A9
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Behavioural patterns

m Chain of responsibility: avoid coupling sender
directly to receiver by passing through chain

B Command: make requests into objects
m |terator: access all elements of a collection

m Mediator: object encapsulating the interactions
of a set of objects: promotes loose coupling

m Observer: decouple viewers from the subject

m (also: Interpreter, Memento, State, Strategy,
Template Method, Visitor)
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