Design Patterns:
Structural and Behavioural

3 April 2009 A
CMPT166 Vince Hu.ston

Dr. Sean Ho
Trinity Western University

»hs
TRINITY
VWESTERN

W LINMERSITY

http://www.vincehuston.org/dp/

Review last time: creational

m Design patterns:
Reusable templates for designing programs
May be very high-level, indep. of prog. language

m Creational patterns
Factory method
Abstract factory
Builder
Prototype
Singleton

2 TRINITY

WESTFRN

W ININFRSITY CMPT166: design patterns 3 Apr 2009

Structural patterns

m Adapter/ wrapper: Convert the interface of a class
Into another interface clients expect

m Bridge: split abstraction from implementation
m Composite: organize objects into trees

m Decorator: dynamically add responsibilities /
functionality to an object

m Facade: hide complexities behind simple interface

m Flyweight: use sharing to support large numbers
of fine-grained objects efficiently

® Proxy: surrogate/placeholder for another object
20 TRINITY
VAWVESTERN

W INPERSITY CMPT166: design patterns 3 Apr 2009

Structural pattern: Adapte

= Convert interface of a class so that two e .
iIncompatible classes can work together gl

m Like converting 3-prong plug to 2-prong socket
or impedance matching electrical signals

® e.g., buy prepackaged software system,
get it working with your
existing system

tRequest(]

m e.g., ClassClimate —»
TWU Student Portal

adp
. 20 TTIMITY
MFCTFRN

W INIVERSITY CMPT166: design patterns

3 Apr 2009

Structural pattern: Bridge

m Decouple an abstraction from its implementation
so that the two can vary independently

® e.qg., light switch abstract concept vs.
iImplementation of kinds of switches

(client)—>@bstr:ctio@—>@mple|rentoa

Gefinemeni) Gefinement)

WP
TRINITY
VWESTFR M
 LINIERSITY

CMPT166: design patterns 3 Apr 2009 5

Structural pattern: Composite

m Tree structure for objects: treat individual
objects and composites in the same way

m e.qg., file directories have entries, each of which
may themselves be directories

B e.g., expression trees

<<intarfaces>>
Component

traverse()

A A

Craverse) | [traverse)

28 TRINITY
WESTFRN
L TN FRYTY

adp

CMPT166: design patterns 3 Apr 2009

Structural pattern: Decorator

® Dynamically add functionality to an object

m Use a wrapper around the object to hide core

® Wrapper may be subclassed
to add functionality

= Decorating a Christmas tree

WESTERN
W INPFRSITY

CMPT166: design patterns 3 Apr 2009 7

Structural pattern: Facade

® Provide a unified interface to a set of interfaces
In @ subsystem

High-level interface: system is easier to use

e.g., web front-end to complex database:
+ want minimal number of widgets, input boxes

user

/(mEEil

complex subsystem

J)j]
TRINITY
WVAFSTFR M

L LINIVERSITY

facade

CMPT166: design patterns 3 Apr 2009

Structural pattern: Flyweight

m Use sharing to support lots of “small” objects

® \When more objects needed, draw from
shared pool on demand

m e.g., multithreaded server:

pool of threads —

+GatFlyweight(in key} +Operation(in extrinsicState)

. e g array Of i'ﬂ"‘-\'Ei;:lhts[l-:.E'-'] exists ™,
bank teIIers - e eing e

create new fiyweight
add to pool of lyweights
return new flyweight

+Dperation{in extrinsicStata)

‘;‘J‘? TRIMITY

II__..-—-.-_.'_L__-_ .I\..-.;'..._._:

WECTFRN

LTS FRSITY CMPT166: design patterns 3 Apr 2009 9

Structural pattern: Proxy

m Surrogate for the real object

m Control access to the real object, but still let
clients think they are talking directly to it

m Use superclass over both real object and proxy
me.qg., proxy HTTP server

® e.g., bank cheque

. ‘TOVNVUNITY _BARK
X -“_E;E-E‘H:_F_LT

STAE
103-3839

POS322c® 12402037070 BBOOOOTERSMTOOW

20

V TRINITY
WESTFRN

WV INRERCITY CMPT166: design patterns 3 Apr 2009 10

Structural patterns

m Adapter/ wrapper: Convert the interface of a class
Into another interface clients expect

m Bridge: split abstraction from implementation
m Composite: organize objects into trees

m Decorator: dynamically add responsibilities /
functionality to an object

m Facade: hide complexities behind simple interface

m Flyweight: use sharing to support large numbers
of fine-grained objects efficiently

® Proxy: surrogate/placeholder for another object
20 TRINITY
VAWVESTERN

W ININFRSITY CMPT166: design patterns 3 Apr 2009 11

Behavioural patterns

m Chain of responsibility: avoid coupling sender
directly to receiver by passing through chain

B Command: make requests into objects
m |terator: access all elements of a collection

m Mediator: object encapsulating the interactions
of a set of objects: promotes loose coupling

m Observer: decouple viewers from the subject

m (also: Interpreter, Memento, State, Strategy,
Template Method, Visitor)

0
TRINITY
VAFSTFRM

W ININFRSITY CMPT166: design patterns 3 Apr 2009 12

Behavior: Chain of responsibility

}IJ? TRIMITY

®m Decouple sender from receiver by passing
request along a chain of intermediate handlers

® Chain may be reconfigured dynamically
® Single pipeline, but many possible handlers
® e.g., coin passing through vending machine

my boss)-»(Z“d level mngegional mgr)>

vice president

CEO)

\WESTERN

1 INPERSITY CMPT166: design patterns 3 Apr 2009 13

Behavioural pattern: Command

®m Encapsulate a request as an object
m cf. C++ function objects, callbacks
m Specify: object, method, arguments
® e.g., meal order at restaurant

._ callback
interface

Customer O dex W 'I.ltl exa
(Client) (Command) {Invo

concrete >(;
PlaceOrder() recelver)
Cook() callback / \
— (concrete)
""f"*‘ TRINITY callback

\WESTERN

LTS FRSITY CMPT166: design patterns 3 Apr 2009 14

Behavioural pattern: Iterator

m Abstract interface to traverse a collection
®m Hide how the collection is stored
m Client interface: first, next, isDone

m e.g., secretary knows her own filing system;
boss only needs ask for “next document”

O PythOn fOr IOOp Aggragate
through dictionaries: [_
; +Next()
Order irrelevant
ConcreteAggregate 3 oncretelterator
J,Jf e +Createlteraton]} <

\WESTERN

LTS FRSITY CMPT166: design patterns 3 Apr 2009 15

Behavioural pattern: Mediator

#? TINITY w/o0 mediator with mediator

® Simplify many-to-many relationships with one
central object that all actors interact with

Loose coupling of peers

m Encapsulate many interactions (e.g., methods)
into one obje :

USERS

T
GRAUPS

MAPPIAG

\WESTERN

1 INPERSITY CMPT166: design patterns 3 Apr 2009

16

Behavioural pattern: Observer

® One-to-many dependency between objects so
that when the subject changes state,
all its observers are notified and updated

e.g., many students checking TWU website
for snow closures

e.g., server message “send to all” clients

subject
€bserve) €bserv9 GbserveD
A9
TRINITY
WESTERN CMPT166: design patterns 3 Apr 2009

W LINPMERSITY

17

Behavioural patterns

m Chain of responsibility: avoid coupling sender
directly to receiver by passing through chain

B Command: make requests into objects
m |terator: access all elements of a collection

m Mediator: object encapsulating the interactions
of a set of objects: promotes loose coupling

m Observer: decouple viewers from the subject

m (also: Interpreter, Memento, State, Strategy,
Template Method, Visitor)

0
TRINITY
VAFSTFRM

W ININFRSITY CMPT166: design patterns 3 Apr 2009 18

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

