
Design Patterns:Design Patterns:
Structural and BehaviouralStructural and Behavioural

3 April 2009
CMPT166
Dr. Sean Ho
Trinity Western University

See also:
Vince Huston

http://www.vincehuston.org/dp/


3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 22

Review last time: creationalReview last time: creational

 Design patterns:
Reusable templates for designing programs
May be very high-level, indep. of prog. language

 Creational patterns

● Factory method
● Abstract factory
● Builder
● Prototype
● Singleton



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 33

Structural patternsStructural patterns

 Adapter/ wrapper: Convert the interface of a class 
into another interface clients expect

 Bridge: split abstraction from implementation

 Composite: organize objects into trees

 Decorator: dynamically add responsibilities / 
functionality to an object

 Facade: hide complexities behind simple interface

 Flyweight: use sharing to support large numbers 
of fine-grained objects efficiently

 Proxy: surrogate/placeholder for another object



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 44

Structural pattern: AdapterStructural pattern: Adapter

 Convert interface of a class so that two 
incompatible classes can work together

 Like converting 3-prong plug to 2-prong socket, 
or impedance matching electrical signals

 e.g., buy prepackaged software system,
get it working with your
existing system

 e.g., ClassClimate →
TWU Student Portal



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 55

Structural pattern: BridgeStructural pattern: Bridge

 Decouple an abstraction from its implementation 
so that the two can vary independently

 e.g., light switch abstract concept vs.
implementation of kinds of switches

client abstraction implementor

refinement refinement



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 66

Structural pattern: CompositeStructural pattern: Composite

 Tree structure for objects: treat individual 
objects and composites in the same way

 e.g., file directories have entries, each of which 
may themselves be directories

 e.g., expression trees



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 77

Structural pattern: DecoratorStructural pattern: Decorator

 Dynamically add functionality to an object

 Use a wrapper around the object to hide core

 Wrapper may be subclassed
to add functionality

 Decorating a Christmas tree



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 88

Structural pattern: FacadeStructural pattern: Facade

 Provide a unified interface to a set of interfaces 
in a subsystem

● High-level interface: system is easier to use
● e.g., web front-end to complex database:

 want minimal number of widgets, input boxes

complex subsystem

user

facade



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 99

Structural pattern: FlyweightStructural pattern: Flyweight

 Use sharing to support lots of “small” objects

 When more objects needed, draw from
shared pool on demand

 e.g., multithreaded server:
pool of threads

 e.g., array of
bank tellers



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1010

Structural pattern: ProxyStructural pattern: Proxy

 Surrogate for the real object

 Control access to the real object, but still let 
clients think they are talking directly to it

 Use superclass over both real object and proxy

 e.g., proxy HTTP server

 e.g., bank cheque



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1111

Structural patternsStructural patterns

 Adapter/ wrapper: Convert the interface of a class 
into another interface clients expect

 Bridge: split abstraction from implementation

 Composite: organize objects into trees

 Decorator: dynamically add responsibilities / 
functionality to an object

 Facade: hide complexities behind simple interface

 Flyweight: use sharing to support large numbers 
of fine-grained objects efficiently

 Proxy: surrogate/placeholder for another object



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1212

Behavioural patternsBehavioural patterns

 Chain of responsibility: avoid coupling sender 
directly to receiver by passing through chain

 Command: make requests into objects

 Iterator: access all elements of a collection

 Mediator: object encapsulating the interactions 
of a set of objects: promotes loose coupling

 Observer: decouple viewers from the subject
 (also: Interpreter, Memento, State, Strategy,

Template Method, Visitor)



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1313

Behavior: Chain of responsibilityBehavior: Chain of responsibility

 Decouple sender from receiver by passing 
request along a chain of intermediate handlers

 Chain may be reconfigured dynamically

 Single pipeline, but many possible handlers

 e.g., coin passing through vending machine

my boss 2nd level mgrme regional mgr

vice president

CEO



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1414

Behavioural pattern: CommandBehavioural pattern: Command

 Encapsulate a request as an object

 cf. C++ function objects, callbacks

 Specify: object, method, arguments

 e.g., meal order at restaurant

callback
interfaceclient

concrete
callback

receiver

concrete
callback



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1515

Behavioural pattern: IteratorBehavioural pattern: Iterator

 Abstract interface to traverse a collection

 Hide how the collection is stored

 Client interface: first, next, isDone

 e.g., secretary knows her own filing system;
boss only needs ask for “next document”

 Python for loop
through dictionaries:

● Order irrelevant



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1616

Behavioural pattern: MediatorBehavioural pattern: Mediator

 Simplify many-to-many relationships with one 
central object that all actors interact with

● Loose coupling of peers

 Encapsulate many interactions (e.g., methods) 
into one objectobject

 e.g., ATC

w/o mediator with mediator



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1717

Behavioural pattern: ObserverBehavioural pattern: Observer

 One-to-many dependency between objects so
that when the subject changes state,
all its observers are notified and updated

● e.g., many students checking TWU website 
for snow closures

● e.g., server message “send to all” clients

subject

observer observer observer



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1818

Behavioural patternsBehavioural patterns

 Chain of responsibility: avoid coupling sender 
directly to receiver by passing through chain

 Command: make requests into objects

 Iterator: access all elements of a collection

 Mediator: object encapsulating the interactions 
of a set of objects: promotes loose coupling

 Observer: decouple viewers from the subject
 (also: Interpreter, Memento, State, Strategy,

Template Method, Visitor)


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

