
Design Patterns:Design Patterns:
Structural and BehaviouralStructural and Behavioural

3 April 2009
CMPT166
Dr. Sean Ho
Trinity Western University

See also:
Vince Huston

http://www.vincehuston.org/dp/


3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 22

Review last time: creationalReview last time: creational

 Design patterns:
Reusable templates for designing programs
May be very high-level, indep. of prog. language

 Creational patterns

● Factory method
● Abstract factory
● Builder
● Prototype
● Singleton



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 33

Structural patternsStructural patterns

 Adapter/ wrapper: Convert the interface of a class 
into another interface clients expect

 Bridge: split abstraction from implementation

 Composite: organize objects into trees

 Decorator: dynamically add responsibilities / 
functionality to an object

 Facade: hide complexities behind simple interface

 Flyweight: use sharing to support large numbers 
of fine-grained objects efficiently

 Proxy: surrogate/placeholder for another object



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 44

Structural pattern: AdapterStructural pattern: Adapter

 Convert interface of a class so that two 
incompatible classes can work together

 Like converting 3-prong plug to 2-prong socket, 
or impedance matching electrical signals

 e.g., buy prepackaged software system,
get it working with your
existing system

 e.g., ClassClimate →
TWU Student Portal



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 55

Structural pattern: BridgeStructural pattern: Bridge

 Decouple an abstraction from its implementation 
so that the two can vary independently

 e.g., light switch abstract concept vs.
implementation of kinds of switches

client abstraction implementor

refinement refinement



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 66

Structural pattern: CompositeStructural pattern: Composite

 Tree structure for objects: treat individual 
objects and composites in the same way

 e.g., file directories have entries, each of which 
may themselves be directories

 e.g., expression trees



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 77

Structural pattern: DecoratorStructural pattern: Decorator

 Dynamically add functionality to an object

 Use a wrapper around the object to hide core

 Wrapper may be subclassed
to add functionality

 Decorating a Christmas tree



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 88

Structural pattern: FacadeStructural pattern: Facade

 Provide a unified interface to a set of interfaces 
in a subsystem

● High-level interface: system is easier to use
● e.g., web front-end to complex database:

 want minimal number of widgets, input boxes

complex subsystem

user

facade



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 99

Structural pattern: FlyweightStructural pattern: Flyweight

 Use sharing to support lots of “small” objects

 When more objects needed, draw from
shared pool on demand

 e.g., multithreaded server:
pool of threads

 e.g., array of
bank tellers



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1010

Structural pattern: ProxyStructural pattern: Proxy

 Surrogate for the real object

 Control access to the real object, but still let 
clients think they are talking directly to it

 Use superclass over both real object and proxy

 e.g., proxy HTTP server

 e.g., bank cheque



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1111

Structural patternsStructural patterns

 Adapter/ wrapper: Convert the interface of a class 
into another interface clients expect

 Bridge: split abstraction from implementation

 Composite: organize objects into trees

 Decorator: dynamically add responsibilities / 
functionality to an object

 Facade: hide complexities behind simple interface

 Flyweight: use sharing to support large numbers 
of fine-grained objects efficiently

 Proxy: surrogate/placeholder for another object



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1212

Behavioural patternsBehavioural patterns

 Chain of responsibility: avoid coupling sender 
directly to receiver by passing through chain

 Command: make requests into objects

 Iterator: access all elements of a collection

 Mediator: object encapsulating the interactions 
of a set of objects: promotes loose coupling

 Observer: decouple viewers from the subject
 (also: Interpreter, Memento, State, Strategy,

Template Method, Visitor)



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1313

Behavior: Chain of responsibilityBehavior: Chain of responsibility

 Decouple sender from receiver by passing 
request along a chain of intermediate handlers

 Chain may be reconfigured dynamically

 Single pipeline, but many possible handlers

 e.g., coin passing through vending machine

my boss 2nd level mgrme regional mgr

vice president

CEO



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1414

Behavioural pattern: CommandBehavioural pattern: Command

 Encapsulate a request as an object

 cf. C++ function objects, callbacks

 Specify: object, method, arguments

 e.g., meal order at restaurant

callback
interfaceclient

concrete
callback

receiver

concrete
callback



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1515

Behavioural pattern: IteratorBehavioural pattern: Iterator

 Abstract interface to traverse a collection

 Hide how the collection is stored

 Client interface: first, next, isDone

 e.g., secretary knows her own filing system;
boss only needs ask for “next document”

 Python for loop
through dictionaries:

● Order irrelevant



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1616

Behavioural pattern: MediatorBehavioural pattern: Mediator

 Simplify many-to-many relationships with one 
central object that all actors interact with

● Loose coupling of peers

 Encapsulate many interactions (e.g., methods) 
into one objectobject

 e.g., ATC

w/o mediator with mediator



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1717

Behavioural pattern: ObserverBehavioural pattern: Observer

 One-to-many dependency between objects so
that when the subject changes state,
all its observers are notified and updated

● e.g., many students checking TWU website 
for snow closures

● e.g., server message “send to all” clients

subject

observer observer observer



3 Apr 20093 Apr 2009CMPT166: design patternsCMPT166: design patterns 1818

Behavioural patternsBehavioural patterns

 Chain of responsibility: avoid coupling sender 
directly to receiver by passing through chain

 Command: make requests into objects

 Iterator: access all elements of a collection

 Mediator: object encapsulating the interactions 
of a set of objects: promotes loose coupling

 Observer: decouple viewers from the subject
 (also: Interpreter, Memento, State, Strategy,

Template Method, Visitor)


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

