
Semester Review:Semester Review:
Object-Oriented ProgrammingObject-Oriented Programming

8 April 2009
CMPT166
Dr. Sean Ho
Trinity Western University

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 22

Course topicsCourse topics

 Practical: the toolkits

● C++ language, OO constructs, and add-ons

● FLTK and drawing, fractals, etc.

● Sockets and threading

 Theoretical: the design process

● Inheritance, class diagrams, templates

● Unit testing

● Use cases, actors

● Design patterns

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 33

C++ languageC++ language

 Files: *.h, *.cpp, *.o: compiling, linking, running

● extern

 C pre-processor: #include, #define, etc.

 for, while, if/else, switch/case

 Built-in primitive types; pointers, arrays

 iostream, cin, cout

 References (&) vs. pointers

● const refs (esp. with operator overloading)

 static (at least 2 meanings), namespaces

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 44

C++ OO constructsC++ OO constructs

 Writing classes: *.h and *.cpp

 Declaring attributes, methods

 public / private / protected

 Constructor, destructor

● Parameters, default values
● Constructor initializer list

 Subclassing, polymorphism, virtual methods

● Abstract (pure virtual) methods/classes
● Compare w/interfaces

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 55

C++ add-onsC++ add-ons

 Exceptions: try/catch, accessing exception obj

 I/O: <fstream>: istream/ostream, getline()

 STL <vector>,

 STL strings: <string>:

● +, insert(), append(), substr(),
● find/replace()
● length/capacity/reserve()
● Sorting

 Templates: methods, classes: declaring, using

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 66

FLTK and graphical programsFLTK and graphical programs

 GUI history: SketchPad, NLS, Xerox, Apple

 FLTK: using Fluid, widgets, compiling

 Structuring a FLTK program: UI vs. core code

 Drawing: <fl_draw.h>

● Simple shapes: line, rect/f, arc/pie
● Complex shapes, transforms

 Fractals, using transforms to draw recursively

● Sierpinski triangle, chaos game
● Towers of Hanoi, Gray codes

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 77

Sockets and threadingSockets and threading

 Sockets:

● Networking: 7 layers, IP (v4/v6), TCP/UDP,
DNS

● Client-server design: send/recv
● Programming: socket/bind/listen → accept
● Multi-threaded server: switchboard

 Threading:

● Concept, shared memory, issues
● Locks (mutex, semaphore); deadlock
● PThreads library: thread callbacks

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 88

OO designOO design

 Designing inheritance hierarchies

● “is a kind of”, “has a”, “knows how to”, “is a”

 UML class diagrams

 Design by contract: pre/post-conditions

 Unit testing: testing+coding, assert()

 Use cases: UML diagram, writing use cases

● Actors, goals, pre/post, basic/alt flows

 Design patterns:

● Creational, structural, behavioural

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 99

Design patterns: creationalDesign patterns: creational

 Factory Method (injection mould):

● “Virtual constructor”

 Abstract Factory (car parts factory press):

● Platform to create several kinds of objects

 Builder (assembling fast food kids' meal):

● Director and hierarchy of Builders

 Prototype (biological cell division):

● Copy constructor / clone / deep copy

 Singleton (office of the President)

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 1010

Design patterns: structuralDesign patterns: structural

 Adapter/ wrapper: Convert the interface of a class
into another interface clients expect

 Bridge: split abstraction from implementation

 Composite: organize objects into trees

 Decorator: dynamically add responsibilities /
functionality to an object

 Facade: hide complexities behind simple interface

 Flyweight: use sharing to support large numbers
of fine-grained objects efficiently

 Proxy: surrogate/placeholder for another object

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 1111

Design patterns: behaviouralDesign patterns: behavioural

 Chain of responsibility: avoid coupling sender
directly to receiver by passing through chain

 Command: make requests into objects

 Iterator: access all elements of a collection

 Mediator: object encapsulating the interactions
of a set of objects: promotes loose coupling

 Observer: decouple viewers from the subject
 (also: Interpreter, Memento, State, Strategy,

Template Method, Visitor)

8 Apr 20098 Apr 2009CMPT166: semester reviewCMPT166: semester review 1212

Where to go from here?Where to go from here?

 Computers are tools →

● Computer scientists are toolsmiths
● Know your tools!
● Computing tools are (mostly) free →

the only cost is your time and energy

 Languages: the right tool for the right job

● CMPT360
● Java (java.sun.com)
● Python, Ruby/Rails, Scala, etc.
● Learn by coding a small fun project!

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

