
Intro to Parallel ComputingIntro to Parallel Computing

20 January 2009
CMPT370
Dr. Sean Ho
Trinity Western University



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 22

CarmelCarmel

 We'll be using carmel's “8” processors

● OpenMP under gcc4
● Linux command-line (ssh/PuTTY); no GUI

 If you don't have a carmel login yet, see
 Dave Friesen <davef@twu.ca>

 Try out the testbed program:

● Download nbody and runtest to carmel
● './runtest' and watch the results

http://cmpt370.seanho.com/openmp/nbody/


20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 33

Some UNIX / Cygwin tipsSome UNIX / Cygwin tips

 Cygwin has command and filename completion:

● Type first few characters and press <Tab>

 Job control:

● When a program (e.g., fluid) is running, press 
Ctrl-Z in the Cygwin window to suspend it

● Type “fg” to resume the suspended job
● Or “bg” to let it run in the background
● Use ampersand: “fluid &” to run in bg
● “jobs” to show all current jobs



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 44

What's on for todayWhat's on for today

 Parallel computing concepts

● Why do parallel?
● vonNeumann abstraction: instructions, data
● Flynn's taxonomy: SISD, SIMD, MISD, MIMD
● Terms, measuring speedup
● Design issues

 See tutorial from LLNL (Livermore) 
supercomputing centre

http://www.llnl.gov/computing/tutorials/parallel_comp/


20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 55

Parallel computingParallel computing

 Sequential computing:

● Divide task into 
instructions

● 1 CPU executes serially

 Parallel computing:

● Multiple tasks
● Multiple CPUs execute 

in parallel

 Accomplish more in the 
same amount of time



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 66

Applications of parallel computeApplications of parallel compute

 Large, compute-intensive problems that can be 
divided up somehow

● Weather modelling
● 3D rendering
● Data mining
● Modelling nuclear reactions
● Protein folding, drug binding sites
● Aircraft design / comput. fluid dynamics
● Large-scale satellite / medical image analysis
● High-visibility website (Amazon, Google, etc.)



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 77

Instructions and dataInstructions and data

 Computers since the 1960s have used the 
(John) vonNeumann model of computing:

Computer
/ CPU

Instructions

Data Result

 CPU follows instructions to operate on data

 vonNeumann's abstraction:

● Instructions and data both stored in memory
● Self-modifying code: rewrite own instructions



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 88

Flynn's taxonomyFlynn's taxonomy

 Multiple data: divide up the problem by data

● Each processor operates on a chunk of data

 Multiple instructions:

● Each processor does a different task

SISD:
Single instr
Single data

SIMD:
Single instr

Multiple data

MISD:
Multiple instr
Single data

MIMD:
Multiple instr
Multiple data



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 99

SISD: single instr, single dataSISD: single instr, single data

 SISD is the classical uniprocessor 
situation

● Serial execution

 Processing can still be pipelined:

● Each instruction has multiple parts
● Each part is done by a different 

CPU component
fetch decode execute memory write-back

Instr 1

Instr 2
Instr 3



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 1010

SIMD: single instr, multiple dataSIMD: single instr, multiple data

 SIMD: same operations on multiple data in 
parallel

● Quite common on today's CPUs
● Intel MMX, SSE, Apple Altivec
● CM-2, Cray C90

 Vector processing:
perform one operation on
a whole vector of numbers

● Add two RGBA values
(128 bits each)



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 1111

MISD: multiple instr, single dataMISD: multiple instr, single data

 MISD:

● Run the same data
through different
programs in parallel

● Not often seen in hardware
● Potential applications:

 One encrypted message to crack; try several 
algorithms in parallel

 One satellite image to process; run several image 
processing filters in parallel



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 1212

MIMD: mult instr, mult dataMIMD: mult instr, mult data

 MIMD:

● Each processor is
independent, runs its
own task on its own data

 “Parallel computer” usually means MIMD

● Most modern supercomputers
● Dual-core (e.g., carmel Xeon)

 MIMD is most flexible, but also most complex:

● Synchronization between processors
● Shared memory access



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 1313

Measuring speedupMeasuring speedup

 A parallelizable task can be broken up into 
discrete tasks (SIMD/MIMD), one per processor

 The parallel speedup is:

(serial execution time) / (parallel execution time)

 Ideal speedup is linear with # processors

 Reality is not so sweet:

● Overhead in setting up parallel tasks
● Communication between processors
● Synchronization points mean waiting for 

slowest task



20 Jan 200920 Jan 2009CMPT370: parallel computingCMPT370: parallel computing 1414

Design issues in parallel Design issues in parallel 
computingcomputing

 Memory model

● Shared: all CPUs access same memory (SMP)
● Distributed: each CPU local memory (cluster)

 Granularity: how often to communicate?

● Coarse: lots of computation between 
communication events

● Fine: processors frequently talk to each other

 Scalability

● How many processors do we want to scale?
● Communications network?


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

