
Parallel computing memory Parallel computing memory 
modelsmodels

22 January 2009
CMPT370
Dr. Sean Ho
Trinity Western University



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 22

Review last timeReview last time

 Parallel computing concepts

● Why do parallel?
● vonNeumann abstraction: instructions, data
● Instruction parallelism vs. data parallelism

 Flynn's taxonomy: SISD, SIMD, MISD, MIMD

● Measuring speedup
● Design issues

 See tutorial from LLNL (Livermore) 
supercomputing centre

http://www.llnl.gov/computing/tutorials/parallel_comp/


22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 33

What's on for todayWhat's on for today

 Memory models:

● Shared (SMP)
● Distributed (cluster)
● Hybrid

 Programming models:

● Threads (PThreads, OpenMP)
● Message passing (MPI)
● Data-parallel (HPF)
● Hybrids

 Automatic vs. manual parallelization



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 44

Shared memoryShared memory

 All processors share a
global memory space:

● Uniform addressing

 Communication is easy: read/write to fixed addr

● Still need locking/synchronization

 UMA: uniform memory access (SMP)

● Equal latency, bandwidth to memory

 NUMA: non-uniform memory access

● Access to local memory is faster
● CC-NUMA: cache-coherent (SGI Origin hypercube)



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 55

Pros/cons of shared memoryPros/cons of shared memory

 Pros:

● Simpler model: easier to program (OpenMP)
● Multi-processor SMP boards make for fast 

memory access
 Carmel's “8” processors: One board, two Intel 

Xeon chips, each with dual-core, each core with 
two HyperThreads

 Cons:

● Doesn't scale well to hundreds of processors
 Geometric explosion of communication links 

between CPUs and memory



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 66

Distributed memoryDistributed memory

 Each processor has its
own memory space

 Access other memory
by passing messages to its controlling CPU

 Coarse-granularity parallelism is desired

 Network fabric is important:

● Ethernet (802.3): CSMA-CD: doesn't scale well!
● Myrinet: low latency, low packet overhead
● InfiniBand: switched; has features like QoS
● SCI (Scalable Coherent Interconnect):

low overhead bus



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 77

Pros/cons of distributed Pros/cons of distributed 
memorymemory

 Pros:

● Scales well to hundreds or thousands of CPUs
 LLNL BlueGene/L

 Cons:

● Complex to program! (MPI)
 Explicit parallelism: programmer's responsibility 

to coordinate communication between processors
 How to span a big data structure across 

memories?

● Memory access times very non-uniform
 Importance of the network fabric:

Sun: “the network is the computer”



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 88

Hybrid shared/distributedHybrid shared/distributed

 Most large supercomputers today use a hybrid:

● Each node is cache-coherent SMP (shared)
● Link nodes via network (distributed)



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 99

Case study: BlueGene/LCase study: BlueGene/L

 Made by IBM/Watson, site at LLNL

 Applications: fluid flow, nanotech,
molecular biochemistry, etc.

 106,496 nodes (dual-proc), 478 Tflops sustained,
69 TB RAM, 1.5 MW in 2500 sqft

 Nodes networked as a
32x32x64 3D torus

 Also 12 login nodes (SuSE)
and 1204 disk I/O nodes (800 TB)

(BlueGene/L homepage)

http://www.llnl.gov/asc/computing_resources/bluegenel/


22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 1010

Programming a parallel Programming a parallel 
machinemachine

 The shared/distributed memory model deals 
with the address space visible by each 
processor

 The parallel programming model used is a 
separate issue:

● Threads (PThreads, OpenMP)
● Message passing (MPI)
● Data parallel (HPF)
● Hybrids of these models



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 1111

ThreadsThreads

 Start with master thread

 Master forks off worker threads

● Each thread can be running same code or 
different code (e.g., subroutines)

 Scatter/gather: when worker threads complete, 
send results back to master thread

 Two implementations:

● POSIX Threads: library-based, explicit parallel
● OpenMP: compiler directives,

easier to “add-on” to serial code
 #pragma omp parallel



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 1212

Message passingMessage passing

 All communication between nodes is via 
messages

 Explicit parallelism:

● Serial program must be restructured by 
programmer

 One unified standard implementation: MPI 
(Message Passing Interface)

● Library routines: MPI_Bcast(), MPI_Reduce()

 MPI homepage

http://www-unix.mcs.anl.gov/mpi/


22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 1313

Data parallel modelData parallel model

 Each parallel task does same
work on a different portion
of a large regular data struct

● Vector, n-D array, etc.

 Use either compiler directives
or library routines to specify
parallelism

 Implementations: HPF (High performance 
Fortran)



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 1414

Hybrid programming modelsHybrid programming models

 Memory models: shared vs. distributed

 Programming models: threads, MPI, data-
parallel

 For clusters (distributed memory model),
MPI is most commonly used

 However, hybrid programming models exist:

● OpenMP to the programmer (ease of use)
● MPI at lower layer (cluster communications)

 HPF (data-parallel) on clusters often uses MPI as 
a transparent back-end



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 1515

Writing a parallel programWriting a parallel program

 Designing a program to work and make full use 
of multiple processors is tough

 Fully automatic parallelizing compilers exist:

● Analyzes your code for parallel opportunities
● For loops, iteration over arrays, etc.

 Directives can make the compiler's job easier:

● #pragma delimits portions of code that have 
minimal dependencies (coarse granularity)

 The most control and speedup is from manually 
programming it: explicit parallelism



22 Jan 200922 Jan 2009CMPT370: memory modelsCMPT370: memory models 1616

Summary of todaySummary of today

 Memory models:

● Shared (SMP)
● Distributed (cluster)
● Hybrid

 Programming models:

● Threads (PThreads, OpenMP)
● Message passing (MPI)
● Data-parallel (HPF)
● Hybrids

 Automatic vs. manual parallelization


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

