
OpenMPOpenMP

27 January 2009
CMPT370
Dr. Sean Ho
Trinity Western University

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 22

Review last timeReview last time

 Memory models:

● Shared (SMP)
● Distributed (cluster)
● Hybrid

 Programming models:

● Threads (PThreads, OpenMP)
● Message passing (MPI)
● Data-parallel (HPF)
● Hybrids

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 33

Writing a parallel programWriting a parallel program

 Designing a program to work and make full use
of multiple processors is tough

 Fully automatic parallelizing compilers exist:

● Analyzes your code for parallel opportunities
● For loops, iteration over arrays, etc.

 Directives can make the compiler's job easier:

● #pragma delimits portions of code that have
minimal dependencies (coarse granularity)

 The most control and speedup is from manually
programming it: explicit parallelism

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 44

OpenMPOpenMP

 An industry standard API for shared-memory
parallelism for high-performance computing

 Programmers interface to OpenMP via:

● Compiler directives (#pragma omp parallel)
● Library subroutines (omp_get_num_threads())
● Environment variables (OMP_NUM_THREADS)

 Fork/join threading model:

● Fork at start of a parallel construct
● Join (implied barrier) at end of construct

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 55

OpenMP parallel constructsOpenMP parallel constructs

 #pragma omp parallel

● Code duplicated to all threads (SIMD)

 #pragma omp for

● Distribute iterations of a for loop

 #pragma omp sections

● #pragma omp section
● #pragma omp section
● Each section has different code, one thread

per section (MIMD)

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 66

Compiling with OpenMPCompiling with OpenMP

 OpenMP is implemented in gcc/g++:
 4.1.2 (OpenMP 2.0) (on carmel)
 4.2 (OpenMP 2.5) (current)
 4.4 (OpenMP 3.0) (devel)

● Also in MSVC 2005, 2008 (but not .NET)
● See OpenMP website for more details

 Include: #include <omp.h>

 Compile with flag: -fopenmp

 Link with: -lgomp (GNU OpenMP)

 See sample Makefiles on carmel under
/home/seanho/cmpt370/

http://openmp.org/wp/openmp-compilers/

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 77

Shared vs. private variablesShared vs. private variables

 By default, most variables in OpenMP are
shared by all threads

● Except variables declared within a block
inside a parallel region

● Or can declare a variable to be private to
each thread

● Also a reduce operation to combine partial
results from each thread (more later)

 helloworld.c example on carmel:

● /home/seanho/cmpt370/helloworld/

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 88

OpenMP synchronization OpenMP synchronization
pragmaspragmas
 #pragma omp parallel

● Next block (use {}) is a parallel section

 #pragma omp critical

● Next block should be one-thread-at-a-time

 #pragma omp single

● next block run by only one of the threads

 #pragma omp barrier

● Wait for all threads: synchronization point

 Others: master, ordered, atomic, flush

 Handy reference card: OpenMP homepage (v3.0)

http://www.openmp.org/mp-documents/OpenMP3.0-SummarySpec.pdf

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 99

How many threads?How many threads?

 Can be fewer threads than physical processors

● Wasting the other processors

 Or more threads than processors

● Threads will queue, waiting for a free CPU

 By default, OpenMP will use as many threads as
there are processors (8 on carmel)

 Change at runtime with environment variable:

● OMP_NUM_THREADS=1 ./helloworld

 Can also change inside program with a library
subroutine

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 1010

OpenMP library routinesOpenMP library routines

 int omp_get_num_threads()

 int omp_set_num_threads()

● How many threads are currently in use

 int omp_get_thread_num()

● Which thread id I am

 double omp_get_wtime()

● Get wall-clock time in number of seconds

 double omp_get_wtick()

● Get precision of omp_get_wtime() in seconds

 A few others (not many) for locking

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 1111

Scheduling a for loopScheduling a for loop

 How is work distributed amongst threads?

● schedule(static) (optional chunk-size)

 Divide iterations into chunks, distribute evenly
amongst threads

● schedule(dynamic) (optional chunk-size)

 Queue of chunks: threads take next avail. chunk

● schedule(guided) (optional chunk-size)

 Like dynamic, but chunk size is exponentially
reduced

● schedule(runtime)
 Follow OMP_SCHEDULE environment variable

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 1212

ReduceReduce

 Option to for loops: reduction(op:var)

● Each thread contributes toward var

● Results are combined using the op

● e.g.: finding sum of a vector
#pragma omp for reduction(+:sum)

for (i = 0; i < num_iters; i++)

sum += vector[i];
● Ops: sum(+), product(*), and(&&), or(||).

 See pi-leibniz.c example

http://twu.seanho.com/09spr/cmpt370/openmp/pi/

27 Jan 200927 Jan 2009CMPT370: OpenMPCMPT370: OpenMP 1313

Lab2: Your OpenMP programLab2: Your OpenMP program

 Ideas:

● Numerical integration (like pi-leibniz.c)
● Generating fractals:

 See mandelbrot/ example

● Dictionary/brute force encryption cracking?
● Prime number generation?

http://twu.seanho.com/09spr/cmpt370/openmp/pi/
http://twu.seanho.com/09spr/cmpt370/openmp/mandelbrot/

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

