
Issues in Parallel ProgrammingIssues in Parallel Programming

29 January 2009
CMPT370
Dr. Sean Ho
Trinity Western University

2009 Career Fair Exhibitors2009 Career Fair Exhibitors
Acts Seminaries
Adventure Teaching
African Children's Choir
Angus One Professional Recruitment
BC Corrections
BC Ferries
BC Human Resources Management

Association
BC Transit Police
Bethesda Christian Association
BOP Korea Connections
Canada Revenue Agency
Canadian Forces
Certified General Accountants
Certified Management Accountants
Communitas Supportive Care Society
Community Employment Resource

Centre
Corporate Express
Correctional Service Canada
Creative Memories
Developmental Disabilities Association
Dulay Burke Financial Recruitment

Edward Jones
EV Logistics
Fraser Health Authority
Freedom 55 Financial
Institute of Chartered Accountants

 of BC
Logos Bible Software
Kintec Footlabs
Meyers Norris Penny LLP
New Westminster Police
Northern Health
Pampered Chef
Power to Change
Retirement Concepts
Royal Bank of Canada
Royal Canadian Mounted Police
Southwestern Company
Studibudi Professional Networking Inc.
Sun Life Financial
TD Canada Trust
Township of Langley
UHY International
Vancouver Fire and Rescue Services

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 55

Lab2: Your OpenMP programLab2: Your OpenMP program

 Ideas:

● Numerical integration (like pi-leibniz.c)
● Generating fractals:

 See mandelbrot/ example

● Dictionary/brute force encryption cracking?
● Prime number generation?

http://twu.seanho.com/09spr/cmpt370/openmp/pi/
http://twu.seanho.com/09spr/cmpt370/openmp/mandelbrot/

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 66

Review last timeReview last time

 OpenMP

● #pragma omp parallel: begin parallel section
 #pragma omp for
 #pragma omp sections

● Shared vs. private variables
 private(), reduction()

● #pragma omp critical/single/barrier
● OMP_NUM_THREADS,omp_get_num_threads()
● Timing: omp_get_wtime()
● schedule(static/dynamic/guided/runtime)

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 77

Addendum: timingAddendum: timing

 <time.h> clock(): CPU time w/ tick resolution

● Usually 100 or 1000 ticks/sec

 <time.h> time(): wall-clock time w/ second res

 <sys/time.h> gettimeofday():

● Wall-clock time in seconds w/ tick resolution

 double omp_get_wtime():

● Wall-clock time in seconds w/ tick resolution
● Platform independent
● Thread dependent

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 88

Issues in parallel prog. designIssues in parallel prog. design

 When designing parallel programs:

● Understand the problem to be solved
 Data dependencies

● Partition the work
 Domain vs. functional partitioning
 Granularity

● Communications!
 Synchronization

● Load balancing
● I/O

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 99

Understand the problemUnderstand the problem

 Parallelizable:

● e.g., find next position of 500k atoms

 Not (easily) parallelizable:

● e.g., find Fibonacci sequence:
 fib(n) = fib(n-2) + fib(n-1)

● Data dependence

 Find bottlenecks to performance

● Optimize inner loops
● Use profiling when necessary

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 1010

Partition the workPartition the work

 Data partitioning

● “SIMD” philosophy
● Each task operates

on part of dataset

 Functional decomposition (“MIMD” philosophy)

● Each task does different work
● e.g., series of audio filters

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 1111

Communication issuesCommunication issues

 I/O often bottleneck: minimize communication

● Coarse-grain parallelism: e.g., FoldingAtHome

 Latency vs. bandwidth

 Unicast (point-to-point) vs. multicast

 Synchronous (blocking) (“phone call”) vs.
asynchronous (non-blocking) (“letter”)

 Ease of programming

● OpenMP abstracts away from programmer
● MPI makes communication more explicit

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 1212

Types of synchronizationTypes of synchronization

 Barrier

● Wait for all tasks to catch up: slowest task
● Implicit barrier at end of each parallel section

 Lock (semaphore/mutex)

● Only one thread can hold the lock at a time
● Wait (block or non-block) for lock to free
● e.g., #pragma omp critical

 Synchronous communications

● Both parties must synchronize
● Blocking idle CPU → → bad!

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 1313

Load balancingLoad balancing

 Want to keep all processors
busy as much as possible

 Easy if tasks are fixed in computation time:

● Array/matrix operations
● Loops (#pragma omp for)

 Often hard to predict how long a task will take

● Sparse arrays: most entries zero
● Adaptive refinement
● N-body (e.g., gravity) simulations

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 1414

Amdahl's law: speedupAmdahl's law: speedup

 If P is the fraction of code that is parallelizable
and N is the number of processors:

 Speedup = 1 / (P/N + (1-P))

 The fraction of code
that is parallelizable
is very important!

 Limits maximum
speedup

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 1515

Sample application: PiSample application: Pi

 Generate random dot

 See if it's within unit circle

 Fraction of dots inside circle
approximates pi/4

 The more dots,
the better precision

 Parallelizable? What does each thread do?

 Granularity?

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 1616

Data ParallelismData Parallelism

 Some programs are embarassingly parallel:

● e.g., add two vectors

 Data dependency: order of execution matters

 Some are parallelizable, but need some
communication:

● Heat equation on a 2D grid

● Each pixel Ux,y +=

 Cx (Ux-1,y + Ux+1,y – 2*Ux,y) +

 Cy (Ux,y-1 + Ux,y+1 – 2*Ux,y)

● Used for blurring images

29 Jan 200929 Jan 2009CMPT370: communicationCMPT370: communication 1717

Heat equation: boundariesHeat equation: boundaries

 Divide work by region of image:

● Data parallelism

 Interior of region can be done
independently

 Boundaries need information
from neighbouring threads

 Use non-blocking communication to
send/receive boundary pixels from neighbours
while processing interior

	Title Slide
	Slide 1
	2009 Career Fair Exhibitors
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

