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Lab2: Your OpenMP programLab2: Your OpenMP program

 Ideas:

● Numerical integration (like pi-leibniz.c)
● Generating fractals:

 See mandelbrot/ example

● Dictionary/brute force encryption cracking?
● Prime number generation?

http://twu.seanho.com/09spr/cmpt370/openmp/pi/
http://twu.seanho.com/09spr/cmpt370/openmp/mandelbrot/
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Review last timeReview last time

 OpenMP

● #pragma omp parallel: begin parallel section
 #pragma omp for
 #pragma omp sections

● Shared vs. private variables
 private(), reduction()

● #pragma omp critical/single/barrier
● OMP_NUM_THREADS,omp_get_num_threads()
● Timing: omp_get_wtime()
● schedule(static/dynamic/guided/runtime)
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Addendum: timingAddendum: timing

 <time.h> clock(): CPU time w/ tick resolution

● Usually 100 or 1000 ticks/sec

 <time.h> time(): wall-clock time w/ second res

 <sys/time.h> gettimeofday():

● Wall-clock time in seconds w/ tick resolution

 double omp_get_wtime():

● Wall-clock time in seconds w/ tick resolution
● Platform independent
● Thread dependent
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Issues in parallel prog. designIssues in parallel prog. design

 When designing parallel programs:

● Understand the problem to be solved
 Data dependencies

● Partition the work
 Domain vs. functional partitioning
 Granularity

● Communications!
 Synchronization

● Load balancing
● I/O
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Understand the problemUnderstand the problem

 Parallelizable:

● e.g., find next position of 500k atoms

 Not (easily) parallelizable:

● e.g., find Fibonacci sequence:
 fib(n) = fib(n-2) + fib(n-1)

● Data dependence

 Find bottlenecks to performance

● Optimize inner loops
● Use profiling when necessary
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Partition the workPartition the work

 Data partitioning

● “SIMD” philosophy
● Each task operates

on part of dataset

 Functional decomposition (“MIMD” philosophy)

● Each task does different work
● e.g., series of audio filters
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Communication issuesCommunication issues

 I/O often bottleneck: minimize communication

● Coarse-grain parallelism: e.g., FoldingAtHome

 Latency vs. bandwidth

 Unicast (point-to-point) vs. multicast

 Synchronous (blocking) (“phone call”) vs.
asynchronous (non-blocking) (“letter”)

 Ease of programming

● OpenMP abstracts away from programmer
● MPI makes communication more explicit
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Types of synchronizationTypes of synchronization

 Barrier

● Wait for all tasks to catch up: slowest task
● Implicit barrier at end of each parallel section

 Lock (semaphore/mutex)

● Only one thread can hold the lock at a time
● Wait (block or non-block) for lock to free
● e.g., #pragma omp critical

 Synchronous communications

● Both parties must synchronize
● Blocking  idle CPU  → → bad!
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Load balancingLoad balancing

 Want to keep all processors
busy as much as possible

 Easy if tasks are fixed in computation time:

● Array/matrix operations
● Loops (#pragma omp for)

 Often hard to predict how long a task will take

● Sparse arrays: most entries zero
● Adaptive refinement
● N-body (e.g., gravity) simulations
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Amdahl's law: speedupAmdahl's law: speedup

 If P is the fraction of code that is parallelizable
and N is the number of processors:

 Speedup = 1 / ( P/N + (1-P) )

 The fraction of code
that is parallelizable
is very important!

 Limits maximum
speedup
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Sample application: PiSample application: Pi

 Generate random dot

 See if it's within unit circle

 Fraction of dots inside circle
approximates pi/4

 The more dots,
the better precision

 Parallelizable?  What does each thread do?

 Granularity?
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Data ParallelismData Parallelism

 Some programs are embarassingly parallel:

● e.g., add two vectors

 Data dependency: order of execution matters

 Some are parallelizable, but need some 
communication:

● Heat equation on a 2D grid

● Each pixel Ux,y +=

 Cx (Ux-1,y + Ux+1,y – 2*Ux,y) +

 Cy (Ux,y-1 + Ux,y+1 – 2*Ux,y)

● Used for blurring images
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Heat equation: boundariesHeat equation: boundaries

 Divide work by region of image:

● Data parallelism

 Interior of region can be done
independently

 Boundaries need information
from neighbouring threads

 Use non-blocking communication to 
send/receive boundary pixels from neighbours 
while processing interior
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