
Transform Matrices,Transform Matrices,
Viewing,Viewing,
ModellingModelling

19 February 2009
CMPT370
Dr. Sean Ho
Trinity Western University

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 22

Review last timeReview last time

 Scalars, vectors, points

 Vector spaces, affine spaces (+point)

 Lines, rays, line segments

 Curves, surfaces

 Normal vectors

 Convex hull

 Linear independence

 Basis, frame (+point)

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 33

What's on for todayWhat's on for today

 Math for 3D graphics: homogeneous coordinates

● 4x4 transform matrices

● Translate, scale, rotate

 Viewing: (see RedBook ch3)

● Positioning the camera: model-view matrix

● Selecting a lens: projection matrix

● Clipping: setting the view volume

 Modelling: vertex lists, face lists, edge lists

● OpenGL vertex arrays and display lists

http://www.glprogramming.org/red/chapter03.html

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 44

Homogeneous coordinatesHomogeneous coordinates

 We use a 4-tuple as a homogeneous
representation for both vectors and points

● [α1 α2 α3 0]T is a vector

● [β1 β2 β3 1]T is a point

● Relative to current coordinate frame

● Any 4-tuple [x y z w]T maps to a point as

 [x/w y/w z/w 1]T

 If w=0, the 4-tuple represents a vector

● Each point in 3D maps to
a line through the origin in 4D

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 55

Changing coordinate systemsChanging coordinate systems

 Say we have a vector whose representation in
one basis (e1, e2, e3) is v = {α1 α2 α3}.

● What is the representation for the same
vector in a different basis, {d1, d2, d3} ?

 Represent each old basis vec ei in the new
basis:

● e1 = γ11d1 + γ12d2 + γ13d3

● e2 = γ21d1 + γ22d2 + γ23d3

● e3 = γ31d1 + γ32d2 + γ33d3

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 66

3x3 vector transform matrix3x3 vector transform matrix

 These nine coefficients form
a 3x3 vector transform matrix M:

●

● w = MTv, where
 v = {α1 α2 α3} is representation in old basis

 w = {β1 β2 β3} is representation in new basis

M=
11 12 13
21 22 23
31 32 33



19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 77

Change of framesChange of frames

 Something similar happens to change frames:

● Old frame is (P, e1, e2, e3)

● New frame is (Q, d1, d2, d3)

● Represent old frame in new basis
● 12 degrees of freedom in affine transform

M= 
11 12 13 0
21 22 23 0
31 32 33 0
41 42 43 1



19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 88

Translation matrixTranslation matrix

 Translate a point p by multiplying by T (=MT):

● p' = Tp

T=
1 0 0 d x
0 1 0 d y
0 0 1 d z
0 0 0 1



19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 99

Scaling matrixScaling matrix

 Scale a point p by multiplying by T:

● p' = Tp

 Fixed point of origin (scaling away from origin)

 Reflection is via negative scale factors

S=
s x 0 0 0
0 s y 0 0
0 0 s z 0
0 0 0 1



19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 1010

Rotation matrixRotation matrix

 Rotate by an angle θ about the z axis

 Similar matrices for rotating about x, y axes

 3 Euler angles

 Order of operations is important!

● Rotation in 3D is non-Abelian

R=
cos −sin  0 0
sin  cos  0 0
0 0 1 0
0 0 0 1



19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 1111

What's on for todayWhat's on for today

 Math for 3D graphics: homogeneous coordinates

● 4x4 transform matrices

● Translate, scale, rotate

 Viewing: (see RedBook ch3)

● Positioning the camera: model-view matrix

● Selecting a lens: projection matrix

● Clipping: setting the view volume

 Modelling: vertex lists, face lists, edge lists

● OpenGL vertex arrays and display lists

http://www.glprogramming.org/red/chapter03.html

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 1212

Placing the camera: model-viewPlacing the camera: model-view

 The model-view matrix describes where the world
is relative to the camera

● Initially identity matrix: camera is at origin of
world, facing in negative z direction

 Say we want to see an object at the origin: either

● Move the camera in the +z direction, or
● Move the world frame

in the -z direction
● Both are equivalent:

glTranslatef(0., 0., -d);

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 1313

Order of transformationsOrder of transformations

 C: current model-view matrix
 M: new additional transformation,

via glMultMatrix, glTranslate, glRotate, etc.
 v: vertex to be transformed

 OpenGL applies transforms in the order: CMv

 So the last transform is applied first!
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glRotatef(60., 0., 0., 1.);
 glTranslatef(10., 0., 0.);
 glBegin(GL_POINTS);

● glVertex3fv(vert);

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 1414

gluLookAtgluLookAt

 Handy helper function for setting up model-view
 #include <GLU.h>

 Specify eye coords, where you want to look at,
and direction of “up” vector:

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 gluLookAt(eyex, eyey, eyez,
atx, aty, atz, upx, upy, upz);

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 1515

Selecting a lens: ProjectionSelecting a lens: Projection

 The projection matrix maps 3D points in the
camera's frame to 2D points on the image
plane

● Input to projection matrix is homogeneous
coords after model-view matrix is applied

● After multiplying by projection matrix,
 Divide to ensure homogeneous coords: [x y z 1]
 Take just the (x, y) coords as coords on image

plane

● Default projection matrix is the identity
 Orthographic projection onto the xy plane

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 1616

Orthographic projectionOrthographic projection

 The manual way:
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glMultMatrix(...);

 The easier way with glOrtho():
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(left, right,

 bottom, top, near, far);

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 1717

Perspective projectionPerspective projection

 Consider a perspective projection with center of
projection (CoP) at origin, and
image plane at z=d:

view from top view from side

 A point p = (x,y,z)
projects to
q = (xp, yp, zp=d) via:

q=Mp ,where M= 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 /d 0



19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 1818

Setting perspective in OpenGLSetting perspective in OpenGL

 Can also do this manually with glMultMatrix()

 Or use glFrustum():

● glFrustum(left, right,
bottom, top, near, far)

 Or use gluPerspective():

● gluPerspective(
fov, aspect, near, far);

● Easier to use than glFrustum()

glFrustum()

gluPerspective()

19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 1919

What's on for todayWhat's on for today

 Math for 3D graphics: homogeneous coordinates

● 4x4 transform matrices

● Translate, scale, rotate

 Viewing: (see RedBook ch3)

● Positioning the camera: model-view matrix

● Selecting a lens: projection matrix

● Clipping: setting the view volume

 Modelling: vertex lists, face lists, edge lists

● OpenGL vertex arrays and display lists

http://www.glprogramming.org/red/chapter03.html

8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 2020

Modelling polygonsModelling polygons

 Simple representation (see CubeView):

glBegin(GL_POLYGON);

glVertex3f(0.0, 0.0, 0.0);
glVertex3f(1.0, 1.5, 2.2);
glVertex3f(-2.3, 1.5, 0.0);

glEnd();

 Problems: inefficient, unstructured

● What if we want to move a vertex to a new
location?

v1

v2

v3

8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 2121

Inward/outward facing polygonsInward/outward facing polygons

 The normal vector for a polygon follows
the right-hand rule

 Specifying vertices in order (v1, v2, v3) is same
as (v2, v3, v1) but different from (v1, v3, v2)

 When constructing a closed surface, make sure
all your polygons face outward

 Backface culling may mean
inward-facing polygons
don't get rendered

v1

v2

v3

8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 2222

Vertex lists and face listsVertex lists and face lists

 Separate geometry from topology

● Vertex coords are geometry
● Connections between vertices (edges,

polygons) are topology

 Vertex list:

 v1 = {x1, y1, z1}

 v2 = {x2, y2, z2}

 Polygon/face list:

 P1 = {v1, v2, v3}

 P2 = {v1, v4, v2}

P2

v1

v2

v3

P1

v4

8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 2323

Edge listsEdge lists

 If only drawing edges (wireframe):

● Many shared edges may be duplicated
● Similar to face list but for edges:

 Does not represent the polygons!

 Vertex list:

 v1 = {x1, y1, z1}

 v2 = {x2, y2, z2}

 Edge list:

 e1 = {v1, v2}

 e2 = {v1, v4}

v1

v

2

v3

v

4

e

2

e

1

8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 2424

OpenGL vertex arraysOpenGL vertex arrays

 Stores a vertex list in the graphics hardware
 Six types of arrays: vertices, colours,

colour indices, normals, texture coords, edge flags

 Our vertex list in C:
 GLfloat verts[][3] = {{0.0, 0.0, 0.0},

{0.1, 0.0, 0.0}, ...}

 Load into hardware:
 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(3, GL_FLOAT, 0, verts);

● 3: 3D vertices
● GL_FLOAT: array is of GLfloat-s
● 0: contiguous data
● verts: pointer to data

8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 2525

Using OpenGL vertex arraysUsing OpenGL vertex arrays

 Use glDrawElements instead of glVertex

 Polygon list references indices in the stored
vertex array

 GLubyte cubeIndices[24] = {0,3,2,1, 2,3,7,6,
0,4,7,3, 1,2,6,5, 4,5,6,7, 0,1,5,4};

 Each group of four indices is one quad

 Draw a whole object in one function call:
 glDrawElements(GL_QUADS, 24,

GL_UNSIGNED_BYTE, cubeIndices);

8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 2626

OpenGL display listsOpenGL display lists

 Take a group of OpenGL commands (e.g.,
defining an object) and store in hardware

 Can change OpenGL state, camera view, etc.
without redefining this stored object

 Creating a display list:
 GLuint cubeDL = glGenLists(1);
 glNewList(cubeDL, GL_COMPILE);

● glBegin(...);; glEnd();

 glEndList();

 Using a stored display list:
 glCallList(cubeDL);

See RedBook ch7

http://www.glprogramming.org/red/chapter07.html

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

