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Review last timeReview last time

 Scalars, vectors, points

 Vector spaces, affine spaces (+point)

 Lines, rays, line segments

 Curves, surfaces

 Normal vectors

 Convex hull

 Linear independence

 Basis, frame (+point)
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What's on for todayWhat's on for today

 Math for 3D graphics: homogeneous coordinates

● 4x4 transform matrices

● Translate, scale, rotate

 Viewing: (see RedBook ch3)

● Positioning the camera: model-view matrix

● Selecting a lens: projection matrix

● Clipping: setting the view volume

 Modelling: vertex lists, face lists, edge lists

● OpenGL vertex arrays and display lists

http://www.glprogramming.org/red/chapter03.html
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Homogeneous coordinatesHomogeneous coordinates

 We use a 4-tuple as a homogeneous 
representation for both vectors and points  

● [ α1 α2 α3 0 ]T is a vector

● [ β1 β2 β3 1 ]T is a point

● Relative to current coordinate frame

● Any 4-tuple [ x y z w ]T maps to a point as

 [ x/w y/w z/w 1 ]T

 If w=0, the 4-tuple represents a vector

● Each point in 3D maps to
a line through the origin in 4D



19 Feb 200919 Feb 2009CMPT370: transform matricesCMPT370: transform matrices 55

Changing coordinate systemsChanging coordinate systems

 Say we have a vector whose representation in 
one basis (e1, e2, e3) is v = {α1 α2 α3}.

● What is the representation for the same 
vector in a different basis, {d1, d2, d3} ?

 Represent each old basis vec ei in the new 
basis:

● e1 = γ11d1 + γ12d2 + γ13d3

● e2 = γ21d1 + γ22d2 + γ23d3

● e3 = γ31d1 + γ32d2 + γ33d3
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3x3 vector transform matrix3x3 vector transform matrix

 These nine coefficients form
a 3x3 vector transform matrix M:

●

● w = MTv, where
 v = {α1 α2 α3} is representation in old basis

 w = {β1 β2 β3} is representation in new basis

M=
11 12 13
21 22 23
31 32 33
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Change of framesChange of frames

 Something similar happens to change frames:

● Old frame is (P, e1, e2, e3)

● New frame is (Q, d1, d2, d3)

● Represent old frame in new basis
● 12 degrees of freedom in affine transform

M= 
11 12 13 0
21 22 23 0
31 32 33 0
41 42 43 1
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Translation matrixTranslation matrix

 Translate a point p by multiplying by T (=MT):

● p' = Tp

T=
1 0 0 d x
0 1 0 d y
0 0 1 d z
0 0 0 1
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Scaling matrixScaling matrix

 Scale a point p by multiplying by T:

● p' = Tp

 Fixed point of origin (scaling away from origin)

 Reflection is via negative scale factors

S=
s x 0 0 0
0 s y 0 0
0 0 s z 0
0 0 0 1
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Rotation matrixRotation matrix

 Rotate by an angle θ about the z axis

 Similar matrices for rotating about x, y axes

 3 Euler angles

 Order of operations is important!

● Rotation in 3D is non-Abelian

R=
cos −sin  0 0
sin  cos  0 0
0 0 1 0
0 0 0 1
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What's on for todayWhat's on for today

 Math for 3D graphics: homogeneous coordinates

● 4x4 transform matrices

● Translate, scale, rotate

 Viewing: (see RedBook ch3)

● Positioning the camera: model-view matrix

● Selecting a lens: projection matrix

● Clipping: setting the view volume

 Modelling: vertex lists, face lists, edge lists

● OpenGL vertex arrays and display lists

http://www.glprogramming.org/red/chapter03.html
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Placing the camera: model-viewPlacing the camera: model-view

 The model-view matrix describes where the world 
is relative to the camera

● Initially identity matrix: camera is at origin of 
world, facing in negative z direction

 Say we want to see an object at the origin: either

● Move the camera in the +z direction, or
● Move the world frame

in the -z direction
● Both are equivalent:

glTranslatef( 0., 0., -d );
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Order of transformationsOrder of transformations

 C: current model-view matrix
 M: new additional transformation,

via glMultMatrix, glTranslate, glRotate, etc.
 v: vertex to be transformed

 OpenGL applies transforms in the order: CMv

 So the last transform is applied first!
 glMatrixMode( GL_MODELVIEW );
 glLoadIdentity();
 glRotatef( 60., 0., 0., 1. );
 glTranslatef( 10., 0., 0. );
 glBegin( GL_POINTS );

● glVertex3fv( vert );
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gluLookAtgluLookAt

 Handy helper function for setting up model-view
 #include <GLU.h>

 Specify eye coords, where you want to look at, 
and direction of “up” vector:

 glMatrixMode( GL_MODELVIEW );
 glLoadIdentity();

 gluLookAt( eyex, eyey, eyez,
atx, aty, atz, upx, upy, upz );
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Selecting a lens: ProjectionSelecting a lens: Projection

 The projection matrix maps 3D points in the 
camera's frame to 2D points on the image 
plane

● Input to projection matrix is homogeneous 
coords after model-view matrix is applied

● After multiplying by projection matrix,
 Divide to ensure homogeneous coords: [x y z 1]
 Take just the (x, y) coords as coords on image 

plane

● Default projection matrix is the identity
 Orthographic projection onto the xy plane
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Orthographic projectionOrthographic projection

 The manual way:
 glMatrixMode( GL_PROJECTION );
 glLoadIdentity();
 glMultMatrix(...);

 The easier way with glOrtho():
 glMatrixMode( GL_PROJECTION );
 glLoadIdentity();
 glOrtho( left, right,

 bottom, top, near, far );
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Perspective projectionPerspective projection

 Consider a perspective projection with center of 
projection (CoP) at origin, and
image plane at z=d:

view from top view from side

 A point p = (x,y,z)
projects to
q = (xp, yp, zp=d) via:

q=Mp ,where M= 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 /d 0
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Setting perspective in OpenGLSetting perspective in OpenGL

 Can also do this manually with glMultMatrix()

 Or use glFrustum():

● glFrustum( left, right,
bottom, top, near, far)

 Or use gluPerspective():

● gluPerspective(
fov, aspect, near, far );

● Easier to use than glFrustum()

glFrustum()

gluPerspective()
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What's on for todayWhat's on for today

 Math for 3D graphics: homogeneous coordinates

● 4x4 transform matrices

● Translate, scale, rotate

 Viewing: (see RedBook ch3)

● Positioning the camera: model-view matrix

● Selecting a lens: projection matrix

● Clipping: setting the view volume

 Modelling: vertex lists, face lists, edge lists

● OpenGL vertex arrays and display lists

http://www.glprogramming.org/red/chapter03.html
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Modelling polygonsModelling polygons

 Simple representation (see CubeView):

glBegin( GL_POLYGON );

glVertex3f( 0.0, 0.0, 0.0 );
glVertex3f( 1.0, 1.5, 2.2 );
glVertex3f( -2.3, 1.5, 0.0 );

glEnd();

 Problems: inefficient, unstructured

● What if we want to move a vertex to a new 
location?

v1

v2

v3
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Inward/outward facing polygonsInward/outward facing polygons

 The normal vector for a polygon follows
the right-hand rule

 Specifying vertices in order (v1, v2, v3) is same 
as (v2, v3, v1) but different from (v1, v3, v2)

 When constructing a closed surface, make sure 
all your polygons face outward

 Backface culling may mean
inward-facing polygons
don't get rendered

v1

v2

v3
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Vertex lists and face listsVertex lists and face lists

 Separate geometry from topology

● Vertex coords are geometry
● Connections between vertices (edges, 

polygons) are topology

 Vertex list:

 v1 = {x1, y1, z1}

 v2 = {x2, y2, z2}

 Polygon/face list:

 P1 = {v1, v2, v3}

 P2 = {v1, v4, v2}

P2

v1

v2

v3

P1

v4
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Edge listsEdge lists

 If only drawing edges (wireframe):

● Many shared edges may be duplicated
● Similar to face list but for edges:

 Does not represent the polygons!

 Vertex list:

 v1 = {x1, y1, z1}

 v2 = {x2, y2, z2}

 Edge list:

 e1 = {v1, v2}

 e2 = {v1, v4}

v1

v

2

v3

v

4

e

2

e

1
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OpenGL vertex arraysOpenGL vertex arrays

 Stores a vertex list in the graphics hardware
 Six types of arrays: vertices, colours,

colour indices, normals, texture coords, edge flags

 Our vertex list in C:
 GLfloat verts[][3] = {{0.0, 0.0, 0.0},

{0.1, 0.0, 0.0}, ...}

 Load into hardware:
 glEnableClientState( GL_VERTEX_ARRAY );
 glVertexPointer( 3, GL_FLOAT, 0, verts );

● 3: 3D vertices
● GL_FLOAT: array is of GLfloat-s
● 0: contiguous data
● verts: pointer to data
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Using OpenGL vertex arraysUsing OpenGL vertex arrays

 Use glDrawElements instead of glVertex

 Polygon list references indices in the stored 
vertex array

 GLubyte cubeIndices[24] = {0,3,2,1, 2,3,7,6,
0,4,7,3, 1,2,6,5, 4,5,6,7, 0,1,5,4};

 Each group of four indices is one quad

 Draw a whole object in one function call:
 glDrawElements( GL_QUADS, 24, 

GL_UNSIGNED_BYTE, cubeIndices );



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 2626

OpenGL display listsOpenGL display lists

 Take a group of OpenGL commands (e.g., 
defining an object) and store in hardware

 Can change OpenGL state, camera view, etc. 
without redefining this stored object

 Creating a display list:
 GLuint cubeDL = glGenLists(1);
 glNewList( cubeDL, GL_COMPILE );

● glBegin(...); ....; glEnd();

 glEndList();

 Using a stored display list:
 glCallList( cubeDL );

See RedBook ch7

http://www.glprogramming.org/red/chapter07.html
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