Transform Matrices, Viewing, Modelling

19 February 2009 CMPT370 Dr. Sean Ho Trinity Western University

Review last time

Scalars, vectors, points Vector spaces, affine spaces (+point) Lines, rays, line segments Curves, surfaces Normal vectors Convex hull Linear independence Basis, frame (+point)

What's on for today

Math for 3D graphics: homogeneous coordinates • 4x4 transform matrices • Translate, scale, rotate Viewing: (see RedBook ch3) Positioning the camera: model-view matrix Selecting a lens: projection matrix • Clipping: setting the view volume Modelling: vertex lists, face lists, edge lists OpenGL vertex arrays and display lists

Homogeneous coordinates

We use a 4-tuple as a homogeneous representation for both vectors and points

- [$\alpha_1 \alpha_2 \alpha_3 0$]^T is a vector
- [$\beta_1 \beta_2 \beta_3 \mathbf{1}$]^T is a point
- Relative to current coordinate frame
- Any 4-tuple [x y z w]^T maps to a point as

◆[x/w y/w z/w 1]^T

If w=0, the 4-tuple represents a vector

 Each point in 3D maps to a line through the origin in 4D

Changing coordinate systems

Say we have a vector whose representation in one basis (e_1 , e_2 , e_3) is $v = \{\alpha_1 \alpha_2 \alpha_3\}$.

- What is the representation for the same vector in a different basis, {d₁, d₂, d₃} ?
- Represent each old basis vec e_i in the new basis:

• $e_1 = \gamma_{11}d_1 + \gamma_{12}d_2 + \gamma_{13}d_3$ • $e_2 = \gamma_{21}d_1 + \gamma_{22}d_2 + \gamma_{23}d_3$ • $e_3 = \gamma_{31}d_1 + \gamma_{32}d_2 + \gamma_{33}d_3$

3x3 vector transform matrix

These nine coefficients form a 3x3 vector transform matrix M:

$$M = \begin{cases} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{cases}$$

w = M^Tv, where
 v = {α₁ α₂ α₃} is representation in old basis
 w = {β₁ β₂ β₃} is representation in new basis

Change of frames

Something similar happens to change frames:
 Old frame is (P, e₁, e₂, e₃)
 New frame is (Q, d₁, d₂, d₃)
 Represent old frame in new basis
 12 degrees of freedom in affine transform

$$M = \begin{vmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{vmatrix}$$

Translation matrix

$$T = \begin{vmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Translate a point p by multiplying by T (=M^T): p' = Tp

CMPT370: transform matrices

19 Feb 2009

Scaling matrix

$$S = \begin{vmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Scale a point p by multiplying by T:
 p' = Tp

Fixed point of origin (scaling away from origin)
 Reflection is via negative scale factors

Rotation matrix

$$R = \begin{vmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Rotate by an angle 0 about the z axis
Similar matrices for rotating about x, y axes
3 Euler angles
Order of operations is important!

Rotation in 3D is non-Abelian

What's on for today

Math for 3D graphics: homogeneous coordinates • 4x4 transform matrices • Translate, scale, rotate Viewing: (see RedBook ch3) Positioning the camera: model-view matrix Selecting a lens: projection matrix • Clipping: setting the view volume Modelling: vertex lists, face lists, edge lists OpenGL vertex arrays and display lists

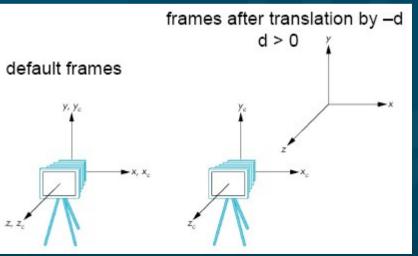
Placing the camera: model-view

The model-view matrix describes where the world is relative to the camera

 Initially identity matrix: camera is at origin of world, facing in negative z direction

Say we want to see an object at the origin: either

- Move the camera in the +z direction, or
- Move the world frame in the -z direction
- Both are equivalent: glTranslatef(0., 0., -d);



Order of transformations

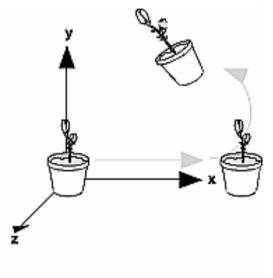
- C: current model-view matrix
- M: new additional transformation, via glMultMatrix, glTranslate, glRotate, etc.
 v: vertex to be transformed
 OpenGL applies transforms in the order: CMV

So the last transform is applied first!

- glMatrixMode(GL_MODELVIEW);
- glLoadIdentity();
- * glRotatef(60., 0., 0., 1.);
- glTranslatef(10., 0., 0.);
- glBegin(GL_POINTS);

• glVertex3fv(vert);

CMPT370: transform matrices

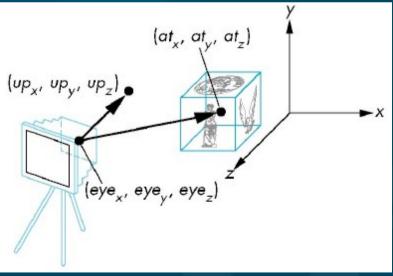


Translate then Rotate

Handy helper function for setting up model-view
 #include <GLU.h>

Specify eye coords, where you want to look at, and direction of "up" vector:

- * glMatrixMode(GL_MODELVIEW);
- glLoadIdentity();
- gluLookAt(eye_x, eye_y, eye_z, at_x, at_y, at_z, up_x, up_y, up_z);



Selecting a lens: Projection

- The projection matrix maps 3D points in the camera's frame to 2D points on the image plane
 - Input to projection matrix is homogeneous coords after model-view matrix is applied
 - After multiplying by projection matrix,
 - Divide to ensure homogeneous coords: [x y z 1]
 - Take just the (x, y) coords as coords on image plane
 - Default projection matrix is the identity
 - Orthographic projection onto the xy plane

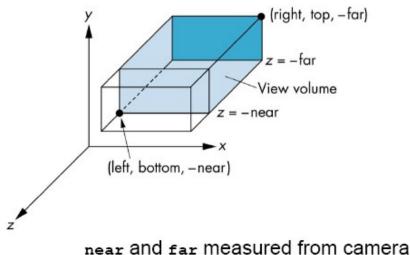
Orthographic projection

The manual way:

- * glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- glMultMatrix(...);

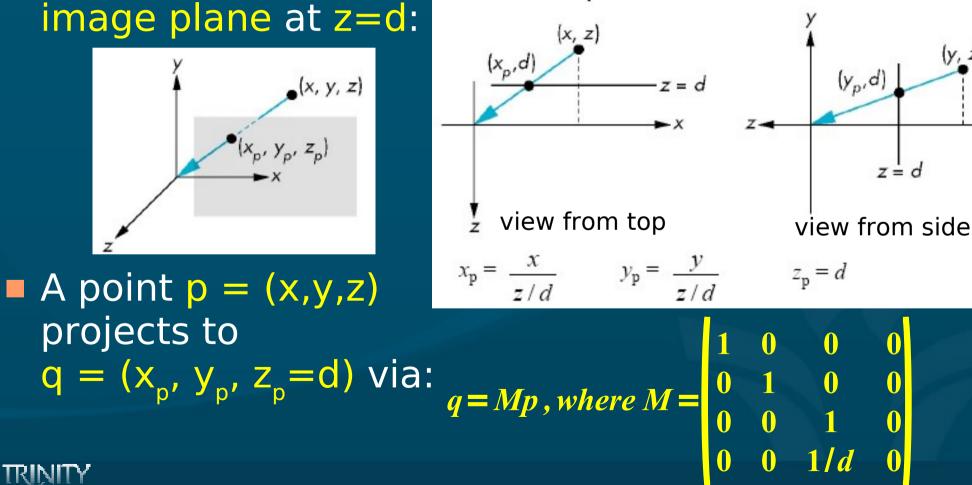
The easier way with glOrtho():

- * glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- glOrtho(left, right, bottom, top, near, far);



Perspective projection

Consider a perspective projection with center of projection (CoP) at origin, and



CMPT370: transform matrices

19 Feb 2009

(y, z)

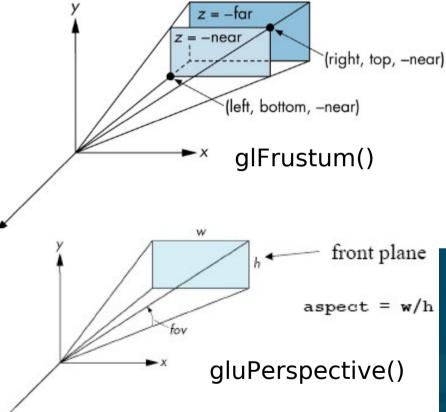
z = d

Setting perspective in OpenGL

Can also do this manually with glMultMatrix()
 Or use glFrustum():

 glFrustum(left, right, bottom, top, near, far)
 glFrustum()

 Or use gluPerspective():
 gluPerspective(fov, aspect, near, far);



Easier to use than glFrustum()

What's on for today

Math for 3D graphics: homogeneous coordinates • 4x4 transform matrices • Translate, scale, rotate Viewing: (see RedBook ch3) Positioning the camera: model-view matrix Selecting a lens: projection matrix • Clipping: setting the view volume Modelling: vertex lists, face lists, edge lists OpenGL vertex arrays and display lists

Modelling polygons

Simple representation (see CubeView): V₃ glBegin(GL POLYGON); glVertex3f(0.0, 0.0, 0.0); glVertex3f(1.0, 1.5, 2.2); glVertex3f(-2.3, 1.5, 0.0); glEnd(); Problems: inefficient, unstructured • What if we want to move a vertex to a new location?

Inward/outward facing polygons

- The normal vector for a polygon follows the right-hand rule
- Specifying vertices in order (v₁, v₂, v₃) is same as (v₂, v₃, v₁) but different from (v₁, v₃, v₂)
- When constructing a closed surface, make sure all your polygons face outward
- Backface culling may mean inward-facing polygons don't get rendered

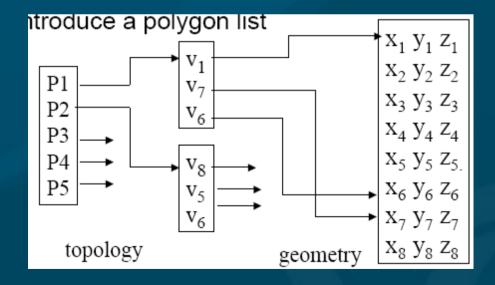
V₂

Vertex lists and face lists

Separate geometry from topology V₁
 Vertex coords are geometry
 Connections between vertices (edges, polygons) are topology

Vertex list:

*v₁ = {x₁, y₁, z₁}
*v₂ = {x₂, y₂, z₂}
■ Polygon/face list:
*P₁ = {v₁, v₂, v₃}
*P₂ = {v₁, v₄, v₂}



V₃

 V_2

V,

P2

P1

Edge lists

If only drawing edges (wireframe):
 Many shared edges may be duplicated
 Similar to face list but for edges:
 Does not represent the polygons!
 Vertex list:

• v₁ = {x₁, y₁, z₁
• v₂ = {x₂, y₂, z₂
Edge list:
• e₁ = {v₁, v₂}

 $\bullet e_2 = \{v_1, v_4\}$

$$\begin{array}{c} e1 \\ e2 \\ e3 \\ e4 \\ e5 \\ e6 \\ e7 \\ e8 \\ e9 \end{array} \xrightarrow{v_1} v_6 \\ x_1 y_1 z_1 \\ x_2 y_2 z_2 \\ x_3 y_3 z_3 \\ x_4 y_4 z_4 \\ x_5 y_5 z_5 \\ x_6 y_6 z_6 \\ x_7 y_7 z_7 \\ x_8 y_8 z_8 \end{array}$$

۷_٦

e

2

OpenGL vertex arrays

Stores a vertex list in the graphics hardware

- Six types of arrays: vertices, colours, colour indices, normals, texture coords, edge flags
 Our vertex list in C:
 - GLfloat verts[][3] = {{0.0, 0.0, 0.0},
 {0.1, 0.0, 0.0}, ...}
- Load into hardware:
 - * glEnableClientState(GL_VERTEX_ARRAY);
 - glVertexPointer(3, GL_FLOAT, 0, verts);
 - 3: 3D vertices
 - GL_FLOAT: array is of GLfloat-s
 - 0: contiguous data
 - verts: pointer to data

CMPT370: viewing and projection

Using OpenGL vertex arrays

Use glDrawElements instead of glVertex

Polygon list references indices in the stored vertex array

GLubyte cubeIndices[24] = {0,3,2,1, 2,3,7,6, 0,4,7,3, 1,2,6,5, 4,5,6,7, 0,1,5,4};
Each group of four indices is one quad
Draw a whole object in one function call:
glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, cubeIndices);

CMPT370: viewing and projection

OpenGL display lists

Take a group of OpenGL commands (e.g., defining an object) and store in hardware

Can change OpenGL state, camera view, etc. without redefining this stored object

Creating a display list:

◆ GLuint cubeDL = glGenLists(1);

• glNewList(cubeDL, GL_COMPILE);

glBegin(...);; glEnd();

glEndList();

Using a stored display list:

• glCallList(cubeDL);

CMPT370: viewing and projection

See RedBook ch7