
File I/OFile I/O

26 Oct 2010
CMPT140
Dr. Sean Ho
Trinity Western University

26 Oct 2010CMPT140: file I/O 2

More list operationsMore list operations

 Delete an element of the list:
del myApples[1] # ["Fuji", "Golden Delicious"]

 List slice (start:end):
myApples[0:1] # ["Fuji"]

 Lists are mutable, so assignment is aliasing:
yourApples = myApples # points to same array

●Changes to myApples
are reflected in yourApples

 Use a whole-list slice to copy a list:
yourApples = myApples[:]

●Shorthand for 0:len(myApples)

26 Oct 2010CMPT140: file I/O 3

File input in PythonFile input in Python

 Open a file for reading:
myFile = open('filename.txt')

● myFile is a file object (file handle)

● Filename is relative to current directory of IDLE

● Or specify absolute pathname: 'z:\filename.txt'

 Read a line from the file:
myFile.readline()

● Returns a string, including the newline

● Returns empty string when it hits the end-of-file

 Close the file when you're done:
myFile.close()

Also see
myFile.readlines()

26 Oct 2010CMPT140: file I/O 4

Seeking in filesSeeking in files

 Files are just streams of bytes

 Python maintains a file pointer: current position

 Get the current position as an index:

myFile.tell() # returns a long int

 Manually set the position of the file pointer:

myFile.seek(0) # go to start of file

myFile.seek(-128, 1) # rewind 128 bytes

 Read a certain number of bytes from the file:

myfile.read(256) # read exactly 256 bytes

myfile.read() # read whole file (yipes!)

● Treats newlines like any other character

26 Oct 2010CMPT140: file I/O 5

Iterating over a fileIterating over a file

 Just like iterating over a list or a string:
prov3File = open('prov3.txt')

for line in prov3File:
line = line.strip()
print(line.upper())

●Each line includes the newline; the .strip()
method of strings removes trailing newlines

26 Oct 2010CMPT140: file I/O 6

Handling file I/O errorsHandling file I/O errors

 File I/O errors raise exceptions (IOError):

● file doesn't exist, no permissions, disk full, …
●More on exceptions next time

 The with clause ensures the file is closed tidily
even if an I/O error happens along the way:

with open('prov3.txt') as provFile:
for line in provFile:

line = line.strip()
do stuff with line

 Don't need to .close(); with does it for you!

26 Oct 2010CMPT140: file I/O 7

File output in PythonFile output in Python

 Open a file for writing:

myFile = open('file.txt', 'w')
● 'w' is the file mode (see next slide)

● The with clause also works for writing

 Write text at the current position:

myFile.write('Hello World!\n')
● Newlines need to be explicit

 Writes are buffered in memory and are flushed
(committed) to disk only in larger chunks

● Force a flush: myFile.flush()

● Writes are implicitly flushed on .close()

26 Oct 2010CMPT140: file I/O 8

File modesFile modes

 Files may be opened in various modes:
● 'r': read input from file (default)

● 'w': write output to new file
(if the file exists, it is cleared first)

● 'a': append output to end of existing file
(if file doesn't exist, it is created)

● 'r+': both read and write to file
(writing only overwrites existing bytes,
will not insert new bytes in the middle of the file)

 On Windows, text I/O performs mangling of end-of-line
characters; use 'b' (e.g., 'rb', 'rw') to prevent that for
binary data

26 Oct 2010CMPT140: file I/O 9

Writing out variables in PythonWriting out variables in Python

 write() only accepts strings:

numApples = 15

myFile.write(numApples) # error

 str() formats a variable for human readability:

myFile.write(str(numApples)) # okay

 Or we can use a format string:

myFile.write(
'I have %d apples.\n' % numApples)

26 Oct 2010CMPT140: file I/O 10

Reading data into variablesReading data into variables

 We need to design our file format:

●One number per line? Int? Float? #decimals?
Order of variables? How to store a list?

 Variables in our programs can be in very
complex data structures

●e.g., list of Student record objects

 File I/O only operates on streams of bytes

 The process of converting a complex data
structure to a stream of bytes is called
serialization – see Python's pickle library

26 Oct 2010CMPT140: file I/O 11

For more informationFor more information

 Python Tutorial ch7 on I/O:
● http://docs.python.org/py3k/tutorial/inputoutput.html

 Python I/O Library reference:
● http://docs.python.org/lib/bltin-file-objects.html

 Python pickle library reference:
● http://docs.python.org/library/pickle.html

http://docs.python.org/py3k/tutorial/inputoutput.html
http://docs.python.org/lib/bltin-file-objects.html
http://docs.python.org/library/pickle.html

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

