
Object-Oriented Design Object-Oriented Design
StrategiesStrategies

20 Jan 2010
CMPT166
Dr. Sean Ho
Trinity Western University

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 22

Method overloadingMethod overloading

 Overloading is giving multiple definitions for a
method with the same name, but different
signature: num arguments or argument types

public int square(int x) {

return x*x;
}

public double square(double x) {

return x*x;
}

int y=5; double z=2.3;

square(y); square(z)

● Do we need a float version as well?

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 33

Default parameter valuesDefault parameter values

 Overloading is Java's way of letting you specify
default values to parameters:
public class Student {

String name;

int ID;

public Student(String name, int ID) {

this.name = name

this.ID = ID

}

public Student() {

name = “Joe Smith”;

ID = 1001;

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 44

Object-oriented designObject-oriented design

 Writing software is not just about the code!

 It is an intentional process including:

● Client interviews to develop a problem
statement and plan

● Software design (charts, algorithms, etc.)
● Coding
● Testing
● Maintenance, documentation

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 55

OO design is NOT:OO design is NOT:

 OO design is not based on:

● Language syntax
● Implementation details
● Platform considerations
● Manipulation of global entities
● OO language features

 Don't do something just because the language
lets you!

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 66

OO design IS:OO design IS:

 OO design is based on:

● Delegation of responsibility
 No monolithic code block does everything

● Independence of objects
 Not connected via globals: simplifies testing!
 Not supervised elsewhere

● Security of state (stored data values)
 private/public

● Portability, reusability
 Abstract platform details
 Use general design principles

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 77

Steps in OO design: 1Steps in OO design: 1

 Describe overall system behaviour

● Write for the non-technical end-user
● User interface: look and feel
● Not about data structures, classes, methods, ..

 e.g., Church Information Manager (CIM):

● database of members and affiliates
 data entry on a simple form
 public access to basic info
 protected access to confidential information

● Pastor's notes; financial information; etc.

 Create church directory

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 88

Steps in OO design: 2Steps in OO design: 2

 Refine behavioural description into components

● Each component holds a set of related tasks
● Components isolated, self-contained!
● Components have thinly-coupled interactions

 e.g., CIM components:

● Main menu / “greeter”
● Database back-end; links
● Pastors' access
● Donations
● Output

Pastors

Donations

Output
Menu

Database

DB Link

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 99

Factoring into componentsFactoring into components

 Suggestion: use 3x5” index cards, one for each
component

● Name of component
● Primary responsibility
● Collaborating components

 If it won't fit on a 3x5” card, it's too complex to
implement!

● Break it down into smaller components

 Write down every design decision, w/ pros/cons

 Postpone implementation detail decisions

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 1010

Steps in OO design: 3Steps in OO design: 3

 From components to classes:

● Each component may have many class types
● Each class defines:

 Behaviour (methods)
 Stored state (instance variables)

● Behaviour is common to all instances
● State is unique to each instance

 Principle of least privilege:

● Provide only enough information to clients to
achieve desired behaviour, nothing more!

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 1111

Writing classesWriting classes

 Design your data structures and relationships

● Person: name, birthdate, link to Household
● Household: phone, address, link to Persons

 Basic methods for each class:

● Display and edit its own information (set/get)
 Access restrictions
 __str__() or toString() method for debuggging

● Initializer/constructor: set default values

 Helper classes (support components)

● Only for one class; hidden to rest of world

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 1212

Top-down codingTop-down coding

 Start with the basic user-interface

● Event-driven GUI: user clicks --> call method
● Stub callbacks: fill in functionality later
● Stub methods: return default values

 Incremental testing

● Test each component before moving on!
● May need to write small separate testbed

programs

 Integration testing (regression testing)

● Test interaction between components

20 Jan 201020 Jan 2010CMPT166: OO designCMPT166: OO design 1313

Source control, build controlSource control, build control

 Source control (e.g., Subversion):

● Central repository for all code, and changes
● Programmers check out components
● When revisions are tested and safe, check-in

commits changes back to the repository
● Concurrent revisions: may need to merge

with other programmers' changes
 Importance of thinly coupled components
 Each component has one project leader

 Build control: automated regression testing,
multiplatform compilation

	Title Slide
	Slide 2
	Slide 3
	Sample Content
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

