
ExceptionsExceptions

3 Feb 2010
CMPT166
Dr. Sean Ho
Trinity Western University

3 Feb 20103 Feb 2010CMPT166: exceptionsCMPT166: exceptions 22

Exceptions for error handlingExceptions for error handling

Recall that exceptions are used for indicating
runtime errors

●Incorrect user input or parameters
●No memory, disk space, permissions, etc.

When an exception is thrown:

●Execution of the current block is terminated
●Search for the nearest exception handler

Search enclosing blocks ({})
Search down the call-stack

(what code invoked the current function)

3 Feb 20103 Feb 2010CMPT166: exceptionsCMPT166: exceptions 33

Exceptions in JavaExceptions in Java

In Java, use try-throw-catch

Create an instance of java.lang.Exception
and throw it:

try {
●if (s1.ID <= 0)

throw new Exception(“Invalid ID!”);
} catch (Exception e) {

●…
}

Can have several catch blocks, for different kinds
of exceptions (first matching one is used)

3 Feb 20103 Feb 2010CMPT166: exceptionsCMPT166: exceptions 44

The caught exception objectThe caught exception object

} catch (Exception e) { ...

A reference to the caught exception object is in e

●Can use this to unpack auxiliary data

The constructor for the Exception class may take
a string argument: stored with the exception

new Exception(“Invalid ID!”)

Get the string with the .getMessage() method on
the caught exception object inside the handler:

System.out.println(e.getMessage());

3 Feb 20103 Feb 2010CMPT166: exceptionsCMPT166: exceptions 55

Custom Exception classesCustom Exception classes

Create your own type of exceptions:
public class StudentError extends Exception

Need at least 2 constructors: no arg, 1 string arg

●Pass the string msg up to superclass constr.:
public StudentError(String msg)

{ super(msg); }
public StudentError()

{ super(“Error with student!”); }

Can also add your own auxiliary data (attributes)
and constructors, set/get methods, etc.

int studentID;

3 Feb 20103 Feb 2010CMPT166: exceptionsCMPT166: exceptions 66

The catch-or-declare ruleThe catch-or-declare rule

A method may encounter exceptions:

●Directly thrown: throw new StudentError(...)
●Or thrown by functions it calls: nextInt()

For checked exceptions, the method must either:

●Catch the exception and handle it, or
●Declare that this method may raise an

exception, and “pass the buck”:
public void setID(int ID)

throws StudentError { … }

3 Feb 20103 Feb 2010CMPT166: exceptionsCMPT166: exceptions 77

Exception class hierarchyException class hierarchy

Throwable

Exception Error

RuntimeException

Checked
exceptions

3 Feb 20103 Feb 2010CMPT166: exceptionsCMPT166: exceptions 88

Exceptions raised by ScannerExceptions raised by Scanner

Using Scanner to read console input:
import java.util.Scanner;
Scanner kbd = new Scanner(System.in);

Expecting an integer:
int num = kbd.nextInt();

If Scanner can't convert the input to the desired
type, it raises an InputMismatchException

This can be caught, so you can try again

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

