
Introduction to SwingIntroduction to Swing

8 Feb 2010
CMPT166
Dr. Sean Ho
Trinity Western University

8 Feb 20108 Feb 2010CMPT166: swingCMPT166: swing 22

What's on for todayWhat's on for today

 Basic dialogues with JOptionPane

 Swing: vs. AWT, lightweight vs. heavyweight

 Superclass structure of Swing

 Swing windows: JFrame

 Event handling: ActionListener

● Anatomy of a Swing program
● Nested and inner classes
● Delegate classes

8 Feb 20108 Feb 2010CMPT166: swingCMPT166: swing 33

JOptionPaneJOptionPane

 import javax.swing.JOptionPane;

 showInputDialog(String prompt)

● Prompt to the user, returns a string

 showMessageDialog(pos, msg, title, type)

● Show dialog box to user
● pos: null for centered in screen

 Or pass a reference to widget

● type: JOptionPane.INFORMATION_MESSAGE
 Or ERROR_MESSAGE, WARNING_MESSAGE,

QUESTION_MESSAGE, PLAIN_MESSAGE

8 Feb 20108 Feb 2010CMPT166: swingCMPT166: swing 44

Swing vs. AWT, light vs. heavySwing vs. AWT, light vs. heavy

 A Java app can mix Swing and AWT features

 Swing is written in Java and is more portable

● AWT relies on local platform's windowing
system: varies across platforms

 Lightweight: not tied to local platform

 Heavyweight: depends on local platform

● AWT widgets are heavyweight
● Most Swing widgets are lightweight

8 Feb 20108 Feb 2010CMPT166: swingCMPT166: swing 55

Common superclasses in SwingCommon superclasses in Swing

 Component (java.awt): GUI, both Swing + AWT

 Container (java.awt): organizes Components

 JComponent (javax.swing):

● Superclass of all lightweight Swing
components

● Pluggable look-and-feel, shortcut keys,
tooltips, localization, etc.

● JLabel, JTextField, JButton, JCheckBox,
JComboBox, JList, JPanel, etc.

8 Feb 20108 Feb 2010CMPT166: swingCMPT166: swing 66

JFrame: a Swing windowJFrame: a Swing window

 To create a window in Swing, subclass JFrame
● import javax.swing.JFrame;

● public class MyWin extends JFrame {

 In the constructor, call the superclass first:
● public MyWin() { super();

 Add widgets, and show the window:
● setVisible(true);

 By default, the 'X' button merely hides the
window. Change this with:

● setDefaultCloseOperation(
JFrame.EXIT_ON_CLOSE);

8 Feb 20108 Feb 2010CMPT166: swingCMPT166: swing 77

Event handling: ActionListenerEvent handling: ActionListener

 If you want your widgets to respond to user
actions, you must provide an event handler:

● An object that implements the
ActionListener interface

● Implements an actionPerformed() method,
which takes one ActionEvent parameter

 import java.awt.*;

 When a button is clicked, actionPerformed() is
called: all relevant info is in the ActionEvent

 The event handler can be a different object or
the same object as your JFrame window

8 Feb 20108 Feb 2010CMPT166: swingCMPT166: swing 88

All-in-one Swing programAll-in-one Swing program

 The Histogram example does triple-duty:
public class Histogram extends JFrame implements

ActionListener {

public Histogram() { ...
widget.addActionListener(this); ... };

public void actionPerformed() { ... };
public static void main() { … new Histogram(); … };

}

 main(): create new window

 Constructor: create+layout widgets

 actionPerformed(): event handler

http://twu.seanho.com/10spr/cmpt166/java/Histogram/

8 Feb 20108 Feb 2010CMPT166: swingCMPT166: swing 99

Nested classesNested classes

 We've seen non-public helper classes defined in
the same file as the primary public class:

 public class Primary { ... }
 class Helper1 { ... }

 We can also define classes nested in another:
 public class Primary {

● class Helper1 { ... } }
 Inner classes are non-static nested classes

● Can access even private items of top-level
● Often used for event handlers

8 Feb 20108 Feb 2010CMPT166: swingCMPT166: swing 1010

Delegate classesDelegate classes

 Use inner classes to define event handlers:
public class Histogram extends JFrame {

public Histogram() { ...
MyHandler handler = new MyHandler();
widget.addActionListener(handler);

… };

private class MyHandler implements ActionListener
{ public void actionPerformed() { ... }; }

public static void main() { … new Histogram(); … };
}

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

