
Swing: Layout ManagersSwing: Layout Managers

12 Feb 2010
CMPT166
Dr. Sean Ho
Trinity Western University

12 Feb 201012 Feb 2010CMPT166: Swing layoutCMPT166: Swing layout 22

Model-View-ControllerModel-View-Controller

 Design patterns: reusable, generic concepts to
help you design your programs

 MVC design pattern:

● Model: stores data
 Computation, methods to transform data
 Data structure issues: arrays? Linked-lists?

Classes?

● View: display / output / read
 println()? Swing? Web? JTextField?

● Controller: manipulate / input / write
 Command-line? Buttons? Mouse?

12 Feb 201012 Feb 2010CMPT166: Swing layoutCMPT166: Swing layout 33

MVC in SwingMVC in Swing

 Model:

● Core content/functionality of program
● Ideally, should be independent of Swing

 View:

● JFrame, JPanel, layout manager, widgets

 Controller: Event handler:

● implements ActionListener, ItemListener {
 public void actionPerformed(ActionEvent e)
 public void itemStateChanged(ItemEvent e)

Model

View Control

12 Feb 201012 Feb 2010CMPT166: Swing layoutCMPT166: Swing layout 44

Swing container classesSwing container classes

 Containers (java.awt.Container) hold other
components

● Swing containers: javax.swing.JComponent
 e.g., both JFrame and JPanel

● Every JComponent can have one layout
manager: decides how to arrange widgets

 JFrame: Swing window

● Can only have one layout manager
● But can nest JPanels, and

each JPanel can have its own layout manager

12 Feb 201012 Feb 2010CMPT166: Swing layoutCMPT166: Swing layout 55

Swing / AWT class hierarchySwing / AWT class hierarchy

Component

Container

Window

Frame

JFrame

JComponent

JPanel

JLabel JTextComponent

JTextField JTextArea

AbstractButton

JButton

BorderLayout

FlowLayout

GridLayout

GridBagLayout

12 Feb 201012 Feb 2010CMPT166: Swing layoutCMPT166: Swing layout 66

Layout managersLayout managers

 Positions widgets within the JPanel/JFrame

● The panel calls setLayout():
 setLayout(new FlowLayout());

● Then widgets are add()ed to the panel:
 add(widget1);

 FlowLayout: simple left-to-right

 BorderLayout: along the edges

 GridLayout: regular grid of equal-size cells

 GridBagLayout: table of unequal-size cells

 GroupLayout: hierarchical grouping in each axis

Ref: Java tutorial

http://java.sun.com/docs/books/tutorial/uiswing/layout/

12 Feb 201012 Feb 2010CMPT166: Swing layoutCMPT166: Swing layout 77

FlowLayoutFlowLayout

 Default and simplest layout

 Simple left-to-right horizontal arrangement

 Widgets laid out in the order they were add()ed

 If not enough space, flow continues on next row

 Can setComponentOrientation() to right-to-left

Widget 1 Widget 2

12 Feb 201012 Feb 2010CMPT166: Swing layoutCMPT166: Swing layout 88

BorderLayoutBorderLayout

 Position widgets along the edges of the panel

 Often used to organize sub-panels

 Edges: north, south, east, west, center
 add(widget1, BorderLayout.NORTH);

BorderLayout.NORTH

.WEST
BorderLayout.

CENTER .EAST

BorderLayout.SOUTH

12 Feb 201012 Feb 2010CMPT166: Swing layoutCMPT166: Swing layout 99

GridLayoutGridLayout

 Uses a 2D grid (table) of equal-size cells

 Constructor specifies number of rows, cols:
 setLayout(new GridLayout(2, 3));

 Widgets are added in order, from top-left cell
across to top-right, then filling each row

● If too many widgets, adds extra columns

1 2 3

4 5 6

12 Feb 201012 Feb 2010CMPT166: Swing layoutCMPT166: Swing layout 1010

GridBagLayoutGridBagLayout

 Cells of a rectangular grid, but not all equal size

 Components can also span multiple cells

 More flexible, but more complex: cf HTML tables

 Specify location of each widget via constraints:
 GridBagConstraints c = new GridBagC...();
 c.gridx = 0; c.gridy = 1; c.gridheight = 2;
 add(widget1, c);

● May include weights indicating relative
amount of space to occupy: e.g., for resize
 c.weightx = 0.2; // get less space

12 Feb 201012 Feb 2010CMPT166: Swing layoutCMPT166: Swing layout 1111

GroupLayoutGroupLayout

 Used in visual GUI designer: NetBeans Matisse

 Specify horizontal and vertical axes separately

 Specify groups:

● Sequential (left-to-right / top-to-bot) or
● Parallel (aligned on top of each other)

 In pseudocode:
 x: Seq(c1, c2, Par(c3, c4))

 y: Seq(Par(c1, c2, c3), c4)

C1C1 C3C3C2C2

C4C4

http://netbeans.org/features/java/swing.html

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

