
TCP/IP Networking: Socket I/OTCP/IP Networking: Socket I/O

17 Mar 2010
CMPT166
Dr. Sean Ho
Trinity Western University

17 Mar 201017 Mar 2010CMPT166: networkingCMPT166: networking 22

TCP client-serverTCP client-server

 TCP is connection-based:

● Phone analogy
● Initial setup, but subsequent packets do

not need to specify destination again
● Server: waits, listens for client
● Client: initiates connection (phone call)
● Once connection is established,

communication may be two-way
(send/receive)

● Either client or server may terminate

17 Mar 201017 Mar 2010CMPT166: networkingCMPT166: networking 33

Making a TCP Server in JavaMaking a TCP Server in Java

 java.net.ServerSocket object
 server = new ServerSocket(port, maxcl);

● maxcl: queue length (reject extra clients)

● BindException raised if port invalid or in use

 Bind socket (start listening) (blocking):
 connection = server.accept();

● Returns a java.net.Socket object

 Communicate via streams:
 connection.getInputStream();
 connection.getOutputStream();

17 Mar 201017 Mar 2010CMPT166: networkingCMPT166: networking 44

Communicating with streamsCommunicating with streams

 Both client and server may send or receive:
 conn.getInputStream()
 conn.getOutputStream()

 Communicate via text streams:
 new Scanner(conn.getInputStream());
 new PrintWriter(conn.getOutputStream());

 Or object streams:
 new ObjectInputStream(

conn.getInputStream());
 new ObjectOutputStream(

conn.getOutputStream());

17 Mar 201017 Mar 2010CMPT166: networkingCMPT166: networking 55

How do we accept clients?How do we accept clients?

 Iterating server: only one client at a time

● One operator answering phones
● Simplest to implement

 Forking server:

● Split off a child thread for each connection
● Original master thread continues to listen
● Switchboard

 Concurrent single server:

● Use select to simultaneously wait on all
open socket IDs

17 Mar 201017 Mar 2010CMPT166: networkingCMPT166: networking 66

More on forking serverMore on forking server

 Multiple threads running concurrently

 Master thread listens on port

 When a client connects, fork off a thread

● Thread handles communication with that
client

 Master thread continues listening for other
connections (switchboard)

 Overhead in forking new threads: so keep pool
of available threads, and reuse dormant threads

17 Mar 201017 Mar 2010CMPT166: networkingCMPT166: networking 77

Connectionless client/serverConnectionless client/server

 TCP is connection-oriented

 UDP is connectionless

● Send data one packet at a time
 Similar to envelopes through CanadaPost
 Fragment larger data into multiple packets

● Packets might:
 Not arrive at all
 Arrive out of order
 Get duplicated

● Less overhead, better latency and possibly
better throughput

17 Mar 201017 Mar 2010CMPT166: networkingCMPT166: networking 88

Receiving a UDP packetReceiving a UDP packet

 Create a DatagramSocket (in java.net):
 sock = new DatagramSocket(port);

 Create a DatagramPacket to store the data:
 byte payload[] = new byte[100];
 packet = new DatagramPacket(

payload, payload.length);

 Wait (block) for a packet:
 sock.receive(packet);

 Read info from packet:
 packet.getData(), .getLength(),

.getAddress(), .getPort()

17 Mar 201017 Mar 2010CMPT166: networkingCMPT166: networking 99

Sending a UDP packetSending a UDP packet

 Prepare payload:
 String msg = “Hello, World!”;
 byte[] payload = msg.getBytes();

 Package payload:
 packet = new DatagramPacket(

payload, payload.length,
hostname, port);

 Send packet:
 socket.send(packet);

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

