
Multi-threadingMulti-threading

19 Mar 2010
CMPT166
Dr. Sean Ho
Trinity Western University

http://twu.seanho.com/10spr/cmpt166/

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 22

Outline for todayOutline for today

 Leftover from last time: UDP send/receive

 Threads

● States threads can be in
● Tasks vs. threads
● In Java: Runnable, Thread
● Anonymous objects and classes
● In Swing

 Dividing up the work: managing threads

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 33

Receiving a UDP packetReceiving a UDP packet

 Create a DatagramSocket (in java.net):
 sock = new DatagramSocket(port);

 Create a DatagramPacket to store the data:
 byte payload[] = new byte[100];
 packet = new DatagramPacket(

payload, payload.length);

 Wait (block) for a packet:
 sock.receive(packet);

 Read info from packet:
 packet.getData(), .getLength(),

.getAddress(), .getPort()

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 44

Sending a UDP packetSending a UDP packet

 Prepare payload:
 String msg = “Hello, World!”;
 byte[] payload = msg.getBytes();

 Package payload:
 packet = new DatagramPacket(

payload, payload.length,
hostname, port);

 Send packet:
 socket.send(packet);

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 55

MultithreadingMultithreading

 Concurrency is running multiple tasks at the
same time

● Downloading a file, watching a movie,
checking email

● One server talking to multiple clients

 Threads are individual tasks (objects) that may
run concurrently

 Multithreading is built-in to Java ≥1.5

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 66

Thread model of parallelismThread model of parallelism

 Threads are lightweight processesprocesses

 Threads allow concurrency

● Make use of multiple processors
● But still useful even on uniprocessor

 Threads use shared memory

● Synchronization issues
for shared objects

 Thread-safe code?

● May also have
local (private) variables

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 77

Thread state diagramThread state diagram

 Threads can be in one of five
states:

● New: not yet initialized
● Runnable: executing its task
● Waiting: blocked waiting for

another thread
● Timed waiting: blocked for a

fixed time
● Terminated

new

runnable

waiting

timed

terminate

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 88

Task schedulingTask scheduling

 Create as many threads as you like

 But # of processors limits # of running threads
 Multi-core; Hyper-threading

 Scheduler assigns runnable threads to
processors

● Part of operating system, not Java VM
● Scheduler can preempt running threads to

allow others to run
● Each thread has a priority (“nice” value)

 Lower priority threads might get starved

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 99

Tasks vs. threadsTasks vs. threads

 Distinction between a task and a thread:

 Task is work that needs to be done

● in Java: the Runnable interface

 Thread is a process that can perform the work

● in Java: the Thread class

 Define the tasks as run() methods in classes

 Create threads by instantiating Thread
(or subclasses of it)

● Assign a Runnable task to the thread

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1010

Threads in Java: RunnableThreads in Java: Runnable

 Define a class with the Runnable interface
 class NumCruncher implements Runnable

● Define (override) the method run():
 public void run() { … }

 Create an instance of Thread that uses
an instance of your class:

 Thread crunch =
new Thread(new NumCruncher());

 Start the thread:
 crunch.start();

 No imports needed: all in java.lang

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1111

The Thread classThe Thread class

 Thread implements Runnable, so you may also
subclass Thread:

 class NumCruncher extends Thread {
public void run() { … }

 Then just call start() directly on your object:
 NumCruncher cr = new NumCruncher();
 cr.start();

 Runnable is the interface; Thread is a class

 The Thread class also has static utility methods:
 Thread.sleep(100); // wait for 100ms

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1212

Example: PrintTaskExample: PrintTask

import java.util.Random;

class PrintTask implements Runnable {

private int sleepTime;
private String name;
private static Random gen = new Random();
public PrintTask(String name) {

this.name = name;
this.sleepTime = gen.nextInt(5000);

}
public void run() {

System.out.println(name + “: good night!”);
Thread.sleep(sleepTime);
System.out.println(name + “: good morning!”);

}
}

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1313

Short-hand: anonymousShort-hand: anonymous

 Instantiate a thread and start it in one line:
 (new NumCruncher()).start();

● The instance is an anonymous object

 Even shorter: use an anonymous class
 (new Thread() {

public void run() { … }
}).start();

● Defines an anonymous subclass of Thread
 Inner class (defined within enclosing class)

● Creates an anonymous instance of it
● Starts the thread object

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1414

Example: starting a Swing appExample: starting a Swing app

 We've used anonymous classes before as a
thread-safe way of initializing a Swing GUI:

 public static void main(String[] args) {
SwingUtilities.invokeLater(

new Runnable() {
public void run() {

new Histogram();
}

});

 invokeLater() runs the task on a thread
designated for interaction with the Swing GUI

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1515

Multithreading for SwingMultithreading for Swing

 If an event handler (e.g., ActionListener) is very
slow, the whole GUI is blocked waiting for it

 So create worker threads for these callbacks

 Use inner class for access to private attributes

 Use anonymous class for one-off tasks:
public void ActionPerformed() {

(new Thread() {
public void run() {

/* do long operation, e.g. network */
}

}).start();
}

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1616

Warning: shared objectsWarning: shared objects

 Swing programs have multiple threads:

● Init thread (main() setup before GUI)
● Event dispatch thread (interacts w/GUI)
● Any worker threads you create

 If multiple threads try to modify
a shared object, errors may occur!

 Only the event dispatch thread should access
the GUI (change widget text, etc.)

● Worker threads may ask the event
dispatch thread to update the GUI

 More details in Swing tutorial: concurrency

http://java.sun.com/docs/books/tutorial/uiswing/concurrency

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1717

How to divide up the work?How to divide up the work?

 Master/worker:
master thread assigns work to worker threads

● Master typically handles UI, input
● Static or dynamic worker pool

 Coworkers: all threads are peers:

● Main thread participates in doing work

 Pipeline: each thread works on a different part
of the task: e.g., automobile assembly line

● Function parallelism vs. data parallelism

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

