
Multi-threadingMulti-threading

19 Mar 2010
CMPT166
Dr. Sean Ho
Trinity Western University

http://twu.seanho.com/10spr/cmpt166/

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 22

Outline for todayOutline for today

 Leftover from last time: UDP send/receive

 Threads

● States threads can be in
● Tasks vs. threads
● In Java: Runnable, Thread
● Anonymous objects and classes
● In Swing

 Dividing up the work: managing threads

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 33

Receiving a UDP packetReceiving a UDP packet

 Create a DatagramSocket (in java.net):
 sock = new DatagramSocket(port);

 Create a DatagramPacket to store the data:
 byte payload[] = new byte[100];
 packet = new DatagramPacket(

payload, payload.length);

 Wait (block) for a packet:
 sock.receive(packet);

 Read info from packet:
 packet.getData(), .getLength(),

.getAddress(), .getPort()

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 44

Sending a UDP packetSending a UDP packet

 Prepare payload:
 String msg = “Hello, World!”;
 byte[] payload = msg.getBytes();

 Package payload:
 packet = new DatagramPacket(

payload, payload.length,
hostname, port);

 Send packet:
 socket.send(packet);

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 55

MultithreadingMultithreading

 Concurrency is running multiple tasks at the
same time

● Downloading a file, watching a movie,
checking email

● One server talking to multiple clients

 Threads are individual tasks (objects) that may
run concurrently

 Multithreading is built-in to Java ≥1.5

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 66

Thread model of parallelismThread model of parallelism

 Threads are lightweight processesprocesses

 Threads allow concurrency

● Make use of multiple processors
● But still useful even on uniprocessor

 Threads use shared memory

● Synchronization issues
for shared objects

 Thread-safe code?

● May also have
local (private) variables

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 77

Thread state diagramThread state diagram

 Threads can be in one of five
states:

● New: not yet initialized
● Runnable: executing its task
● Waiting: blocked waiting for

another thread
● Timed waiting: blocked for a

fixed time
● Terminated

new

runnable

waiting

timed

terminate

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 88

Task schedulingTask scheduling

 Create as many threads as you like

 But # of processors limits # of running threads
 Multi-core; Hyper-threading

 Scheduler assigns runnable threads to
processors

● Part of operating system, not Java VM
● Scheduler can preempt running threads to

allow others to run
● Each thread has a priority (“nice” value)

 Lower priority threads might get starved

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 99

Tasks vs. threadsTasks vs. threads

 Distinction between a task and a thread:

 Task is work that needs to be done

● in Java: the Runnable interface

 Thread is a process that can perform the work

● in Java: the Thread class

 Define the tasks as run() methods in classes

 Create threads by instantiating Thread
(or subclasses of it)

● Assign a Runnable task to the thread

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1010

Threads in Java: RunnableThreads in Java: Runnable

 Define a class with the Runnable interface
 class NumCruncher implements Runnable

● Define (override) the method run():
 public void run() { … }

 Create an instance of Thread that uses
an instance of your class:

 Thread crunch =
new Thread(new NumCruncher());

 Start the thread:
 crunch.start();

 No imports needed: all in java.lang

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1111

The Thread classThe Thread class

 Thread implements Runnable, so you may also
subclass Thread:

 class NumCruncher extends Thread {
public void run() { … }

 Then just call start() directly on your object:
 NumCruncher cr = new NumCruncher();
 cr.start();

 Runnable is the interface; Thread is a class

 The Thread class also has static utility methods:
 Thread.sleep(100); // wait for 100ms

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1212

Example: PrintTaskExample: PrintTask

import java.util.Random;

class PrintTask implements Runnable {

private int sleepTime;
private String name;
private static Random gen = new Random();
public PrintTask(String name) {

this.name = name;
this.sleepTime = gen.nextInt(5000);

}
public void run() {

System.out.println(name + “: good night!”);
Thread.sleep(sleepTime);
System.out.println(name + “: good morning!”);

}
}

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1313

Short-hand: anonymousShort-hand: anonymous

 Instantiate a thread and start it in one line:
 (new NumCruncher()).start();

● The instance is an anonymous object

 Even shorter: use an anonymous class
 (new Thread() {

public void run() { … }
}).start();

● Defines an anonymous subclass of Thread
 Inner class (defined within enclosing class)

● Creates an anonymous instance of it
● Starts the thread object

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1414

Example: starting a Swing appExample: starting a Swing app

 We've used anonymous classes before as a
thread-safe way of initializing a Swing GUI:

 public static void main(String[] args) {
SwingUtilities.invokeLater(

new Runnable() {
public void run() {

new Histogram();
}

});

 invokeLater() runs the task on a thread
designated for interaction with the Swing GUI

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1515

Multithreading for SwingMultithreading for Swing

 If an event handler (e.g., ActionListener) is very
slow, the whole GUI is blocked waiting for it

 So create worker threads for these callbacks

 Use inner class for access to private attributes

 Use anonymous class for one-off tasks:
public void ActionPerformed() {

(new Thread() {
public void run() {

/* do long operation, e.g. network */
}

}).start();
}

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1616

Warning: shared objectsWarning: shared objects

 Swing programs have multiple threads:

● Init thread (main() setup before GUI)
● Event dispatch thread (interacts w/GUI)
● Any worker threads you create

 If multiple threads try to modify
a shared object, errors may occur!

 Only the event dispatch thread should access
the GUI (change widget text, etc.)

● Worker threads may ask the event
dispatch thread to update the GUI

 More details in Swing tutorial: concurrency

http://java.sun.com/docs/books/tutorial/uiswing/concurrency

19 Mar 201019 Mar 2010CMPT166: multithreadingCMPT166: multithreading 1717

How to divide up the work?How to divide up the work?

 Master/worker:
master thread assigns work to worker threads

● Master typically handles UI, input
● Static or dynamic worker pool

 Coworkers: all threads are peers:

● Main thread participates in doing work

 Pipeline: each thread works on a different part
of the task: e.g., automobile assembly line

● Function parallelism vs. data parallelism

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

