
Multi-threading in SwingMulti-threading in Swing

22 Mar 2010
CMPT166
Dr. Sean Ho
Trinity Western University

See also:
●Swing tutorial

●Flipper example

http://twu.seanho.com/10spr/cmpt166/
http://java.sun.com/docs/books/tutorial/uiswing/concurrency/index.html
http://twu.seanho.com/10spr/cmpt166/java/Flipper/

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 22

Outline for todayOutline for today

 SwingWorker class for threads in Swing

 Sending and receiving results:

● doInBackground() and done()

 Publishing progress updates / interim results:

● publish() and process()

 Cancelling a background task

● cancel() and isCancelled()

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 33

Threads in SwingThreads in Swing

 Swing programs have multiple threads:

● Init thread (main() setup before GUI)
● Event dispatch thread (interacts w/GUI)
● Any worker threads you create

 Only the event dispatch thread should access
the GUI (change widget text, etc.)

● Worker threads have to ask the event
dispatch thread to update the GUI

 How do worker threads communicate to the
event dispatch thread?

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 44

SwingWorker abstract classSwingWorker abstract class

 Subclass of Thread that allows you to:

 Define the task to be done in background

 Run code on the event dispatch thread
when the worker thread is done

 Return an object from the worker thread
to the event dispatch thread

 Send progress updates from the worker thread
to the event dispatch thread

 Define bound properties:
when the worker thread changes them,
events get sent to the event dispatch thread

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 55

Using SwingWorkerUsing SwingWorker

 SwingWorker is abstract: so subclass it
● class Fetcher extends SwingWorker {

 SwingWorker is templated: specify the
type/class of object returned by the bg task:

● class Fetcher extends SwingWorker<Image, Void>

 Override doInBackground() to define the task:
● public Image doInBackground() { … }

● Return type is same as in template
● Should only modify local variables
● Return result of the long-running task

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 66

Getting the result: done()Getting the result: done()

 Override the done() method to define how the
event dispatch thread gets the results:

● public void done() {
try {

myButton.setIcon(get());
} except (InterruptedException e) {
} except (ExecutionException e) {
}

 This method is run on the event dispatch thread

 Not called until the worker thread has finished

● get() blocks until worker is finished

 Copies from return value of doInBackground()

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 77

Starting the worker threadStarting the worker thread

 To get the worker thread running:
Create an instance of your subclass of
SwingWorker and call its .execute() method

● Fetcher fetcher = new Fetcher();

● fetcher.execute();

● Different from usual Thread.start()

 This could be done in the action listener for a
button, for instance

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 88

Example with SwingWorkerExample with SwingWorker

 public void actionPerformed(ActionEvent evt) {
(new SwingWorker<ImageIcon, Void>() {

public ImageIcon doInBackground() {
ImageIcon img =

(ImageIcon) serverIn.getObject();
return img;

}
public void done() {

try {
myButton.setIcon(get());

} except (InterruptedException e) {
} except (ExecutionException e) {
}

}
}).execute();

}

event listener
for button

anonymous
class

slow task

get obj returned by
doInBackground()

start the thread

run by
event disp.

thread

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 99

Publishing progress updatesPublishing progress updates

 The worker thread may send objects to the
event dispatch thread as interim results:

 Declare type of interim result in template:
● … extends SwingWorker<Image, Float> {

 From doInBackground(), call publish():
● publish(bytesFetched / totBytes);

 Override process() to specify how event
dispatch thread handles an update:

● public void process(List<Float> updates) {

● Given a List of accumulated updates

 publish() may be called very very frequently!

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 1010

Summary of SwingWorkerSummary of SwingWorker

 (new SwingWorker<ImageIcon, Float>() {
public ImageIcon doInBackground() {

// long task
// periodically call publish() with an update
// return an ImageIcon

}
public void process(List<Float> updates) {

// update progress bar UI, etc.
}
public void done() {

try {
// get() ImageIcon result, then setIcon(), etc.

} except (InterruptException e) { … }
}

}).execute();

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 1111

Cancelling a background taskCancelling a background task

 Call the .cancel() method of the worker thread

● Means thread can't be an anon. object

 In the worker thread (doInBackground()),
check if we've been cancelled: if (isCancelled())

 Or cancel using interrupts:

● Call cancel(true) instead of just cancel()
● Worker thread receives InterruptException
● Only if worker thread is doing something

that can raise InterruptException:
Thread.sleep(), network send/receive, …

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

