
Multi-threading in SwingMulti-threading in Swing

22 Mar 2010
CMPT166
Dr. Sean Ho
Trinity Western University

See also:
●Swing tutorial

●Flipper example

http://twu.seanho.com/10spr/cmpt166/
http://java.sun.com/docs/books/tutorial/uiswing/concurrency/index.html
http://twu.seanho.com/10spr/cmpt166/java/Flipper/

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 22

Outline for todayOutline for today

 SwingWorker class for threads in Swing

 Sending and receiving results:

● doInBackground() and done()

 Publishing progress updates / interim results:

● publish() and process()

 Cancelling a background task

● cancel() and isCancelled()

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 33

Threads in SwingThreads in Swing

 Swing programs have multiple threads:

● Init thread (main() setup before GUI)
● Event dispatch thread (interacts w/GUI)
● Any worker threads you create

 Only the event dispatch thread should access
the GUI (change widget text, etc.)

● Worker threads have to ask the event
dispatch thread to update the GUI

 How do worker threads communicate to the
event dispatch thread?

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 44

SwingWorker abstract classSwingWorker abstract class

 Subclass of Thread that allows you to:

 Define the task to be done in background

 Run code on the event dispatch thread
when the worker thread is done

 Return an object from the worker thread
to the event dispatch thread

 Send progress updates from the worker thread
to the event dispatch thread

 Define bound properties:
when the worker thread changes them,
events get sent to the event dispatch thread

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 55

Using SwingWorkerUsing SwingWorker

 SwingWorker is abstract: so subclass it
● class Fetcher extends SwingWorker {

 SwingWorker is templated: specify the
type/class of object returned by the bg task:

● class Fetcher extends SwingWorker<Image, Void>

 Override doInBackground() to define the task:
● public Image doInBackground() { … }

● Return type is same as in template
● Should only modify local variables
● Return result of the long-running task

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 66

Getting the result: done()Getting the result: done()

 Override the done() method to define how the
event dispatch thread gets the results:

● public void done() {
try {

myButton.setIcon(get());
} except (InterruptedException e) {
} except (ExecutionException e) {
}

 This method is run on the event dispatch thread

 Not called until the worker thread has finished

● get() blocks until worker is finished

 Copies from return value of doInBackground()

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 77

Starting the worker threadStarting the worker thread

 To get the worker thread running:
Create an instance of your subclass of
SwingWorker and call its .execute() method

● Fetcher fetcher = new Fetcher();

● fetcher.execute();

● Different from usual Thread.start()

 This could be done in the action listener for a
button, for instance

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 88

Example with SwingWorkerExample with SwingWorker

 public void actionPerformed(ActionEvent evt) {
(new SwingWorker<ImageIcon, Void>() {

public ImageIcon doInBackground() {
ImageIcon img =

(ImageIcon) serverIn.getObject();
return img;

}
public void done() {

try {
myButton.setIcon(get());

} except (InterruptedException e) {
} except (ExecutionException e) {
}

}
}).execute();

}

event listener
for button

anonymous
class

slow task

get obj returned by
doInBackground()

start the thread

run by
event disp.

thread

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 99

Publishing progress updatesPublishing progress updates

 The worker thread may send objects to the
event dispatch thread as interim results:

 Declare type of interim result in template:
● … extends SwingWorker<Image, Float> {

 From doInBackground(), call publish():
● publish(bytesFetched / totBytes);

 Override process() to specify how event
dispatch thread handles an update:

● public void process(List<Float> updates) {

● Given a List of accumulated updates

 publish() may be called very very frequently!

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 1010

Summary of SwingWorkerSummary of SwingWorker

 (new SwingWorker<ImageIcon, Float>() {
public ImageIcon doInBackground() {

// long task
// periodically call publish() with an update
// return an ImageIcon

}
public void process(List<Float> updates) {

// update progress bar UI, etc.
}
public void done() {

try {
// get() ImageIcon result, then setIcon(), etc.

} except (InterruptException e) { … }
}

}).execute();

22 Mar 201022 Mar 2010CMPT166: threads in SwingCMPT166: threads in Swing 1111

Cancelling a background taskCancelling a background task

 Call the .cancel() method of the worker thread

● Means thread can't be an anon. object

 In the worker thread (doInBackground()),
check if we've been cancelled: if (isCancelled())

 Or cancel using interrupts:

● Call cancel(true) instead of just cancel()
● Worker thread receives InterruptException
● Only if worker thread is doing something

that can raise InterruptException:
Thread.sleep(), network send/receive, …

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

