
Design Patterns (1)Design Patterns (1)

7 Apr 2010
CMPT166
Dr. Sean Ho
Trinity Western University

See also:
Vince Huston,
JavaCamp

http://twu.seanho.com/10spr/cmpt166/
http://www.vincehuston.org/dp/
http://www.javacamp.org/designPattern/


7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 22

UML and reusable designsUML and reusable designs

 Diagrams for 

● Use-case scenarios
● Component / CRC diagrams
● Class diagram
● Sequence diagram 

 Christopher Alexander, “Notes on the Synthesis 
of Form”, Harvard University Press, 1964

 Ref: Gamma, Helm, Johnson, Vlissides,
“Design Patterns: Elements of Reusable OO 
Software”

http://en.wikipedia.org/wiki/Design_Patterns


7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 33

Design patternsDesign patterns

 A pattern is a named abstraction

● from a recurring concrete form
● that expresses the essence of
● a proven general solution

 A pattern has three parts:

● some recurring problem from the real world
● the context of the problem (when to solve it)
● the rule telling us how to solve it

 Describe a class of problems and how to solve



7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 44

Parts of a design patternParts of a design pattern

 Name: should be meaningful

 Problem: desired goal and obstacles

 Context: preconditions on problem

 Forces: relevant constraints, trade-offs, caveats

 Solution: structure, relationships, how-to

 Related patterns: co-dependencies, “see also”

 Known uses: example applications



7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 55

Classes of patterns (high to low)Classes of patterns (high to low)

 Conceptual/architectural

● Structural organization of software systems
● Set of predefined components
● Relationships between components

 Design

● How to refine each component
● Commonly recurring structure of components

 Programming idiom

● How to code a particular component feature



7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 66

Classes of patterns (GoF)Classes of patterns (GoF)

 Creational patterns

● Interfaces to
generate
new objects

 Structural patterns

● How to organize
a large system
in components

 Behavioural patterns

● How components interact with each other to 
accomplish a common goal



7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 77

Creational patternsCreational patterns

 Factory Method: create a variety of objects

 Abstract Factory: group of related obj factories

 Builder: delegate creation of components

 Prototype: clone a template object

 Singleton: enforce having only one instance



7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 88

Creational: factory methodCreational: factory method

 An interface to create an object,
but without specifying which subclass

 Analogy: plastic injection-mould
determines shape of output

 e.g., need to create a new Person; don't know in 
advance if it's Student, Staff, or Faculty

PersonCreator
makePerson()

StudentCreator
makePerson()

Person

Student

subclass subclass

creates

JavaCamp,
Wikipedia

http://www.javacamp.org/designPattern/factory.html
http://en.wikipedia.org/wiki/Factory_method_pattern


7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 99

Creational: abstract factoryCreational: abstract factory

 Family of similar factories

● Client code doesn't know/care which 
concrete factory is used

● May use a collection of factory methods

 Analogy: press to stamp out auto parts

 e.g., adaptable look-and-feel of GUI widgets
GUIFactory

newScrollbar()

MacGUIFactory
newScrollbar()

Scrollbar

MacScrollbarcreates

JavaCamp,
Wikipedia

http://www.javacamp.org/designPattern/abstractfactory.html
http://en.wikipedia.org/wiki/Abstract_factory_pattern


7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 1010

Creational pattern: builderCreational pattern: builder

 Separate construction of a complex object
from its representation

● Analogy: assembling fast food kids' meals

 Director class parses the
request and representationn

 Hierarchy of Builder classess
actually makes the objects

JavaCamp,
Wikipedia

http://www.javacamp.org/designPattern/builder.html
http://en.wikipedia.org/wiki/Builder_pattern


7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 1111

Creational pattern: prototypeCreational pattern: prototype

 Create new objects by copying a prototype

● Analogy: biological cell division
● e.g., sheet-music editor: copy and paste notes

 Staves are objects; each note is an object

● Design each object so it knows how to copy 
itself: clone() method

● Copy constructor
MusicElement

clone()

Note
clone()

Rest
clone()

Fermata
clone()

JavaCamp,
Wikipedia

http://www.javacamp.org/designPattern/prototype.html
http://en.wikipedia.org/wiki/Prototype_pattern


7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 1212

Creational pattern: singletonCreational pattern: singleton

 Ensure a class only has one instance,
and provide a global point of access to it

 Analogy: only one Prime Minister

 Often implement by making constructor private

● Provide a static get method for the singleton
 public class PrimeMinister {

private PrimeMinister thePM;
private PrimeMinister() { /* create new PM */ };
public static getPM() {

if (!thePM) thePM = new PrimeMinister();
return thePM; }

JavaCamp,
Wikipedia

http://www.javacamp.org/designPattern/singleton.html
http://en.wikipedia.org/wiki/Singleton_pattern


7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 1313

Structural patternsStructural patterns

 Facade: unified/simplified interface to system

 Adapter/ wrapper: Convert the interface of a 
class into another interface clients expect

● Lets otherwise incompatible classes cowork

 Bridge: decouple an abstraction from its 
implementation so they can vary independently

 Proxy: surrogate/placeholder for another object

 Decorator: dynamically add responsibilities / 
functionality to an object

 Flyweight: use sharing to support large
numbers of fine-grained objects efficiently



7 Apr 20107 Apr 2010CMPT166: design patternsCMPT166: design patterns 1414

Structural pattern: facadeStructural pattern: facade

 Provide a unified interface to a set of interfaces 
in a subsystem

● High-level interface: system is easier to use
● e.g., web front-end to complex database:

 want minimal number of widgets, input boxes

complex subsystem

user

facade


	Title Slide
	Slide 2
	Sample Content
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

