Design Patterns (1)

7 Apr 2010 See also:
CMPT166 Vince Huston,
JavaCamp

Dr. Sean Ho
Trinity Western University

9
TRINITY
WESTFRN

L INIVERSITY

http://twu.seanho.com/10spr/cmpt166/
http://www.vincehuston.org/dp/
http://www.javacamp.org/designPattern/

UML and reusable designs

m Diagrams for
Use-case scenarios
Component / CRC diagrams
Class diagram
Sequence diagram

m Christopher Alexander, “Notes on the Synthesis
of Form”, Harvard University Press, 1964

m Ref: Gamma, Helm, Johnson, Vlissides,
“Design Patterns: Elements of Reusable OO
Software”

»ha

TRINITY
VWESTERN

W ININFRSITY CMPT166: design patterns 7 Apr 2010

http://en.wikipedia.org/wiki/Design_Patterns

Design patterns

Design Patterns

Elements of Reusable

Object-Oriented Software

m A pattern is a named abstraction [Erxs

Richard Helm
Ralph Johnson

from a recurring concrete form eSS
that expresses the essence of
a proven general solution

m A pattern has three parts:

some recurring problem from the real world
the context of the problem (when to solve it)
the rule telling us how to solve it

m Describe a class of problems and how to solve

»ha

v TRIMITY
WVWESTERN _ i
T INVERSITY CMPT166: design patterns 7 Apr 2010

Parts of a design pattern /# N

® Name: should be meaningful

®m Problem: desired goal and obstacles
m Context: preconditions on problem
m Forces: relevant constraints, trade-offs, caveats

m Solution: structure, relationships, how-to

m Related patterns: co-dependencies, “see also”
m Known uses: example applications

I
TRINITY
WESTERNM

| LINIVERSITY CMPT166: design patterns 7 Apr 2010 4

Classes of patterns (high to low)

m Conceptual/architectural
Structural organization of software systems
Set of predefined components
Relationships between components
m Design
How to refine each component
Commonly recurring structure of components
® Programming idiom

How to code a particular component feature

M
TRINITY
WESTFRN

W ININFRSITY CMPT166: design patterns 7 Apr 2010

Classes of patterns (GoF)

The Sacred Elements of the Faith

m Creational patterns | |
the holy the holy

IN te rf aces to Origins structures
generate
new objects

m Structural patterns

the hul}r
behaviors

How to organize
a large system
In components

m Behavioural patterns

How components interact with each other to

0 accomplish a common goal
VTRIMIW
WESTERN CMPT166: design patterns 7 Apr 2010 6

W 1LINPFRSITY

Creational patterns

m Factory Method: create a variety of objects

m Abstract Factory: group of related obj factories
m Builder: delegate creation of components

m Prototype: clone a template object

m Singleton: enforce having only one instance

9
TRINITY
WESTFRN

L INIVERSITY CMPT166: design patterns 7 Apr 2010

JavaCamp,
Wikipedia

Creational: factory method

®m An interface to create an object,
but without specifying which subclass

® Analogy: plastic injection-mould
determines shape of output

® e.g., heed to create a new Person; don't know In
advance if it's Student, Staff, or Faculty

‘" PersonCreator ° =
'\ makePerson() ,,' . Person
%UbCIaSS Sub{/ass
StudentCreator)
Student
makePerson() / creates
Y
TRINITY
WESTERN CMPT166: design patterns 7 Apr 2010 8

| 1 INIVERSITY

http://www.javacamp.org/designPattern/factory.html
http://en.wikipedia.org/wiki/Factory_method_pattern

JavaCamp,
Wikipedia

Creational: abstract factory

m Family of similar factories

Client code doesn't know/care which
concrete factory is used

May use a collection of factory methods
® Analogy: press to stamp out auto parts
me.g, adaptable look-and-feel of GUI widgets

. GUIFactory = = .Z7Toneeccs Abstract Factory
! ' Scrollbar .
s .newScrollbar() Sc £ .I??_
7\ T ;
(MacGUIFﬁkc):tory\ S— (MacScroIIbaD sach platform
Mo newsScro ar() j creates products
. & TRINITY
VWESTERN

W INPVERSITY CMPT166: design patterns 7 Apr 2010 9

http://www.javacamp.org/designPattern/abstractfactory.html
http://en.wikipedia.org/wiki/Abstract_factory_pattern

JavaCamp,
Wikipedia

Creational pattern: builder

m Separate construction of a complex object
from its representation

Analogy: assembling fast food kids' meals

Customer Cashier Restaurant Crew

O D i re C to r C I a S S p a rS e S t h e (Client) i Director) i Builder)
re q u e St a N d re p re S e N ta ti O | Order Kid s Meal

m Hierarchy of Builder classes
actually makes the objects

' (1
w

I P
..:'.:lf-._ R T

#@' TRINITY

WESTFRN
oy man FRITY

gn patterns 7 Apr 2010 10

http://www.javacamp.org/designPattern/builder.html
http://en.wikipedia.org/wiki/Builder_pattern

JavaCamp,

Creational pattern: prototype

®m Create new objects by copying a prototype
Analogy: biological cell division

e.g., sheet-music editor: copy and paste notes
+ Staves are objects; each note is an object

Design each object so it knows how to copy
itself: clone() method iz owrooooos

Copy constructor s.___Clone()

Note Rest Fermata
clone() clone() clone()
. 2 TRINITY
WVWESTFRN

W ININFRSITY CMPT166: design patterns 7 Apr 2010 11

Y

http://www.javacamp.org/designPattern/prototype.html
http://en.wikipedia.org/wiki/Prototype_pattern

JavaCamp,
Wikipedia

Creational pattern: singletoA

Singleton

®m Ensure a class only has one instance,
and provide a global point of access to it

+ Analogy: only one Prime Minister
m Often implement by making constructor private

Provide a static get method for the singleton

¢ public class PrimeMinister {

orivate PrimeMinister thePM:
orivate PrimeMinister() { /* create new PM */ };

public static getPM() {
If ('thePM) thePM = new PrimeMinister();
return thePM; }

M
TRINITY
WESTFRN

W ININFRSITY CMPT166: design patterns 7 Apr 2010 12

http://www.javacamp.org/designPattern/singleton.html
http://en.wikipedia.org/wiki/Singleton_pattern

Structural patterns

m Facade: unified/simplified interface to system

m Adapter/ wrapper: Convert the interface of a
class into another interface clients expect

Lets otherwise incompatible classes cowork

m Bridge: decouple an abstraction from its
implementation so they can vary independently

m Proxy: surrogate/placeholder for another object

m Decorator: dynamically add responsibilities /
functionality to an object

® Flyweight: use sharing to support large
2 »nmy humbers of fine-grained objects efficiently

WESTFRN e
W ININFRSITY CMPT166: design patterns 7 Apr 2010 13

Structural pattern: facade

® Provide a unified interface to a set of interfaces
In @ subsystem

High-level interface: system is easier to use

e.g., web front-end to complex database:
+ want minimal number of widgets, input boxes

user

/(mEEil

complex subsystem

3"# n
TRINITY
VAESTERN

L LINIVERSITY

facade

CMPT166: design patterns 7 Apr 2010 14

	Title Slide
	Slide 2
	Sample Content
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

