
Design Patterns:Design Patterns:
Structural and BehaviouralStructural and Behavioural

9 April 2010
CMPT166
Dr. Sean Ho
Trinity Western University

See also:
Vince Huston,
JavaCamp

http://twu.seanho.com/10spr/cmpt166/
http://www.vincehuston.org/dp/
http://www.javacamp.org/designPattern/


9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 22

Design patterns (GoF)Design patterns (GoF)

 Reusable templates for designing programs
May be very high-level, indep. of prog. language

 Creational patterns

● Factory method
● Abstract factory
● Builder
● Prototype
● Singleton



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 33

Structural pattern: AdapterStructural pattern: Adapter

 Convert interface of a class so that two 
incompatible classes can work together

 Like converting 3-prong plug to 2-prong socket, 
or impedance matching electrical signals

 e.g., buy prepackaged software system,
get it working with your
existing system

 e.g., WindowAdapter
provides empty
implementations of all
WindowListener methods



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 44

Structural pattern: BridgeStructural pattern: Bridge

 Decouple an abstraction from its implementation 
so that the two can vary independently

 e.g., light switch abstract concept vs.
implementation of kinds of switches

client abstraction implementor

refinement refinement



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 55

Structural pattern: CompositeStructural pattern: Composite

 Tree structure for objects: treat individual 
objects and composites in the same way

 e.g., file directories have entries,
each of which may themselves be directories

 e.g., widgets and containers (Android Views)

 e.g., expression trees



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 66

Structural pattern: DecoratorStructural pattern: Decorator

 Dynamically add functionality via a wrapper 

● More flexible than static subclassing

 e.g., JScrollPane for widgets

 e.g., ObjectOutputStream on
a FileOutputStream



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 77

Structural pattern: FacadeStructural pattern: Facade

 Provide a unified interface to a set of interfaces 
in a subsystem

● High-level interface: system is easier to use
● e.g., web front-end to complex database:

 want minimal number of widgets, input boxes

complex subsystem

user

facade



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 88

Structural pattern: FlyweightStructural pattern: Flyweight

 Use sharing to support lots of “small” objects

 When more objects needed,
draw from shared pool on demand

 Often use factory to create initial pool

 e.g., thread pool for
multithread server

 Row of bank tellers



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 99

Structural pattern: ProxyStructural pattern: Proxy

 Surrogate for the real object

 Control access to the real object, but still let 
clients think they are talking directly to it

 Use superclass over both real object and proxy

 Contrast with Adapter, Bridge?

 e.g., proxy HTTP server

 e.g., bank cheque



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 1010

Structural patternsStructural patterns

 Adapter/ wrapper: Convert the interface of a class 
into another interface clients expect

 Bridge: split abstraction from implementation

 Composite: organize objects into trees

 Decorator: dynamically add responsibilities / 
functionality to an object

 Facade: hide complexities behind simple interface

 Flyweight: use sharing to support large numbers 
of fine-grained objects efficiently

 Proxy: surrogate/placeholder for another object



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 1111

Design patterns (GoF)Design patterns (GoF)



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 1212

Behavior: Chain of responsibilityBehavior: Chain of responsibility

 Decouple sender from receiver by passing 
request along a chain of intermediate handlers

 Chain may be reconfigured dynamically

 Single pipeline, but many possible handlers

 e.g., coin passing through vending machine

my boss 2nd level mgrme regional mgr

vice president

CEO



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 1313

Behavioural pattern: CommandBehavioural pattern: Command

 Encapsulate a request as an object

● e.g., function objects, callbacks

 Specify: object, method, arguments

 e.g., meal order at restaurant

 Support undo/redo callback
interfaceclient

concrete
callback

receiver

concrete
callback



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 1414

Behavioural: InterpreterBehavioural: Interpreter

 Given a domain-specific language,
define a grammar for the language and
an engine to translate into objects

 Vocabulary + syntax

 e.g., parse config file

 e.g., read music →
produce sound

 Useful for repeated,
similar problems within
a well-defined domain



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 1515

Behavioural patternsBehavioural patterns

 Chain of responsibility: avoid coupling sender 
directly to receiver by passing through chain

 Command: make requests into objects

 Interpreter: define macro language + parser

 Iterator: access all elements of a collection

 Mediator: object encapsulating the interactions 
of a set of objects: promotes loose coupling

 Memento: save/restore state of object

 Observer: decouple viewers from the subject



9 Apr 20109 Apr 2010CMPT166: design patternsCMPT166: design patterns 1616

Design patterns (GoF)Design patterns (GoF)


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

