Ch2: Exploring Data: Charts

13 Sep 2011 BUSI275 Dr. Sean Ho

- •HW1 due Thu 10pm
- Download and open"SportsShoes.xls"

Outline for today

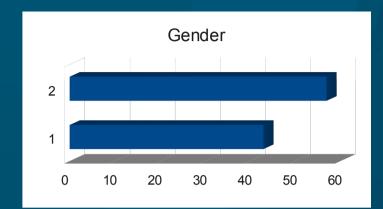
- Exploring data with charts:
 - Tallying frequency distributions
 - Gentle intro to Excel, array formulas
 - Qualitative vars: bar, pie
 - Multiple vars: crosstabs, clustered bar
 - Quantitative vars: histogram, line
 - Multiple vars: scatter

Frequency distributions

How frequently each value of a variable appears in the dataset (either pop or sample)

■ Data usually come as 1 row = 1 participant:

1	Homeroom #	First Name	Last Name	Payment	T-Shirt Color	T-Shirt Size
3	105	Esther	Yaron	7-Oct	Dark Red	Small
4	105	Melissa	White	7-Oct	Heather Grey	Small
5	220-A	Christopher	Peyton-Gomez	Pending	White	Small
6	220-A	Brigid	Ellison	Pending	Dark Red	Small
7	220-B	Windy	Shaw	7-Oct	Heather Grey	Small
8	220-B	Malik	Reynolds	7-Oct	Heather Grey	Small
9	220-8	Michael	Lazar	14-Oct	White	Small
10	105	Christiana	Chen	5-Oct	Dark Red	Medium
11	105	Sidney	Kelly	11-Oct	Dark Red	Medium
12	105	Nathan	Albee	13-Oct	Heather Grey	Medium
13	110	Matt	Benson	11-Oct	White	Medium
14	110	Gabriel	Del Toro	13-Oct	White	Medium
15	135	Chantal	Weller	15-Oct	White	Medium


Compute by tallying up how many occurrences of each value exist in the data:

e.g., for "T-Shirt Size" (level of meas?):
 Small: 10; Medium: 20; Large: 15

Excel: freq. dist. & bar chart

- Dataset: SportsShoes.xls
 - Add new sheet: "Charts"
- Frequency distribution:

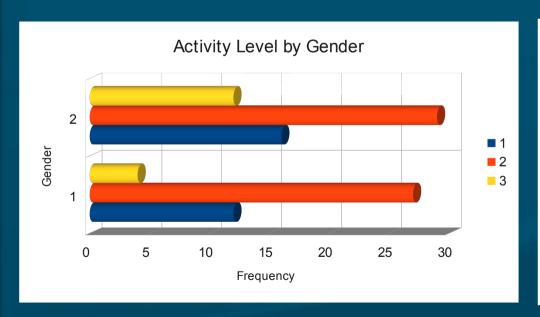
- Enter poss. values (Gender coded as 1, 2)
- FREQUENCY() array formula
- Relative Frequencies (%): divide by total
 - Use '\$' for abs. cell ref.; format as %
- Bar chart:
 - Insert > Bar > 2D > Select Data:
 - Data: freqs; Cat. Axis Labels: values

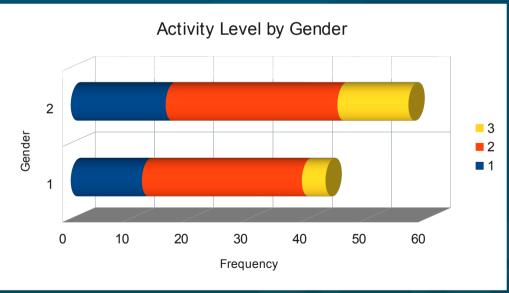
Excel array formulas

- Regular formulas (functions) take cells or cell ranges as input and produce a single output
 - Array formulas output to a range of cells
- Highlight the range where output will go
- Enter the formula:

- =FREQUENCY()
- Data: highlight Data!M3:M102
- Bins (values): highlight cells with "1","2"
- Don't hit OK yet! Use Ctrl-Shift-Enter instead to indicate it is an array formula

Multiple vars: crosstabs

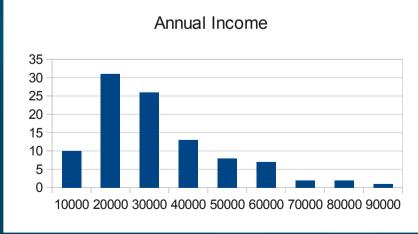

- Consider all combinations of values:
 - e.g., Gender: 1 or 2; Activity: 1, 2, 3
 so there are 6 combos of (Gender, Act)
- Cross-tabulations (Pivot Tables, Joint freq. dist):
 - Insert > Pivot Table
 - Select Range: L2:M102
 - Row Labels: Gender
 - Col Labels: Activity
 - Values: either


Summarize E	By: Count
-------------------------------	-----------

Count - Activity	Activity			
Gender	1	2	3	Total Result
1	12	27	4	43
2	16	29	12	57
Total Result	28	56	16	100

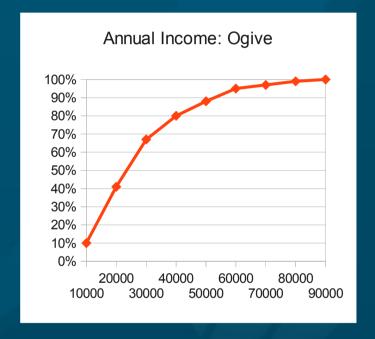
Multiple vars: clustered bars

- If one of the nominal variables only has a few possible values (categories), then
- We can use clustered or stacked bar charts:



Quantitative vars: histograms

- For quantitative vars (scale, ratio), must group data into classes
 - e.g., length: 0-10cm, 10-20cm, 20-30cm...
 (class width is 10cm)
 - Specify class boundaries: 10, 20, 30, ...
- How many classes? for sample size of n, use k classes, where $2^k \ge n$
- Can use FREQUENCY() w/ column chart, or
- Data > Data AnalysisHistogram


Cumulative distrib.: ogive

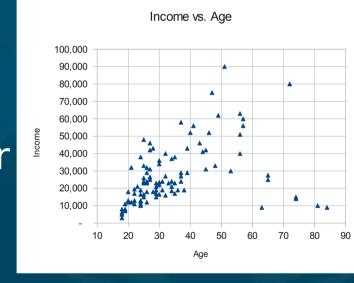
The ogive is a curve showing the cumulative

distribution on a variable:

Frequency of values equal to or less than a given value

- Compute cumul. freqs.
- Insert > Line w/Markers

13 Sep 2011


Pareto chart is an ogive on a nominal var, with bins sorted by decreasing frequency

Sort > Sort by: freq > Order: Large to small **BUSI275: Exploring**

2 quant. vars: scatterplot

- Each participant in the dataset is plotted as a point on a 2D graph
 - (x,y) coordinates are that participant's observed values on the two variables
- Insert > XY Scatter
- If more than 2 vars, then either
 - 3D scatter (hard to see), or
 - Match up all pairs: matrix scatter

Time series: line graph

- Think of time as another variable
 - Horizontal axis is time
- Insert > Line > Line

TODO

- HW1 (ch1-2): due this Thu 15Sep at 10pm
 - Format as a clear, neat document
 - Also upload your Excel spreadsheet
 - HWs are to be individual work
- Get to know your classmates and form teams
 - Email me when you know your team
 - You can come up with a good name, too
- Discuss topics/variables you are interested in
 - Find existing data, or gather your own?

