Ch7: Sampling Distributions
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BUSI275
Dr. Sean Ho
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Outline for today

m Sampling distributions
Sampling distribution of the sample mean
U and o,
Central Limit Theorem

m Uses of the SDSM
Probability of sample avg above a threshold
90% confidence interval
Estimating needed sample size
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Sampling error &t ™" | sample

TR > X
m Sampling is the process of drawing a sample
out from a population

m Sampling error is the difference between a
statistic calculated on the sample and the
true value of the statistic in the population

m e.g., pop. of 100 products; avg price is u=%$50

Draw a sample of 10 products,
calculate average price to be x=%$55

We just so happened to draw 10 products
that are more expensive than the average

Sampling error is $5
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Sampling distribution

Draw one sample of size n

~ind its sample mean x (or other statistic)
Draw another sample of size n; find its mean
Repeat for all possible samples of size n

Build a histogram of all those sample means

\
—»| sample [— x
sample |— x

sample |— x

>
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® In the histogram for the population,
each block represents one observation
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® In the histogram for the sampling distribution,
» . each block represents one whole sample!

29 Sep 2011



SDSM

m Sampling distribution of sample means

Histogram of sample means (x) of all possible
samples of size n taken from the population

It has its own mean, ., and SD, o
m SDSM is centred around the true mean u
e, b = U
m |If u=%$50 and our sample of 10 has x=%$55,
we just so happened to take a high sample

But other samples will have lower x
On average, the x should be around $50
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Properties of the SDSM

m L= [ centred around true mean
m 0O_= 0/Vn: narrower as sample size increases

For large n, any sample looks about the same
Larger n = sample is better estimate of pop
0. Is also called the standard error

m |[f pop is normal, then SDSM is also normal

m |[f pop size N is finite and sample size n is a
sizeable fraction of it (say >5%), need to adjust
standard error: J
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Central Limit Theorem

® In general, we won't know the shape of the
population distribution, but

m As n gets larger, the SDSM gets more normal

So we can use NORMDIST/INV to make
calculations on it

m SO, as sample size increases, two good things:
Standard error decreases (o, = 0/Vn)

SDSM becomes more normal (CLT)

SDSM SDSM
: @Sma" n. : @'arge n
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SDSM as n increases

m @n=1, SDSM matches original population
®m As n increases, SDSM gets tighter and normal

Parent 1r'r1pI| ng Sampling 51mpf| ng

] RegardleSS of Population Distribution: n=2  Distribution: n=5  Distributio
shape of original
population!

m Note: pop doesn't §
get more normal;
it does not change

®m Only the sampling
distribution
changes
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http://hemist.com/?p=540

SDSM: example

meight Is normal: p=10kg, o=4kg

Say we have to pay extra fee if the average
package weight in a shipment is over 12kg

m If our shipment has 4 packages, what is the
chance we have to pay fee?

Standard error: 0. = 4/V4 = 2kg
z=(x-W)o. =(12-10)/2 =1
Area to right: 1-NORMSDIST(1)=15.87%
+0Or: 1-NORMDIST(12, 10, 2, 1)
m 16 pkgs? -
Std err: o, = 4/v16 = 1kg; z = (12-10)/1 = 2
e Ty ® Area to right: 1-NORMSDIST(2) = 2.28%
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SDSM: example

® Assume mutual fund MER norm: u=4%, 0=1.8%
Broker randomly(!) chooses 9 funds

We want to say, “90% of the time, the avg
MER for the portfolio of 9 funds is between
Y% and  %.” (find the limits)

B Lower limit: 90% In middle = 5% In left tall
NORMSINV(0.05) =z = -1.645
Std err: o, = 1.8/v9 = 0.6%
zZ=(x-1)/0 =-1.645=(x-4)/0.6
= lower limitis x = 4 - (1.645)(0.6) = 3.01%
m Upper: §=u+(z)(0§) =4 4+ (1.645)(0.6) = 4.99%
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MER example: conclusion

m We conclude that, if the broker randomly
chooses 9 mutual funds from the population

® 90% of the time, the average MER In the
portfolio will be between 3.01% and 4.99%

This does not mean 90% of the funds have
MER between 3.01% and 4.99%!

90% on SDSM, not 90% on orig. population

m |f the portfolio had 25 funds instead of 9,
the range on avg MER would be even narrower

But the range on MER in the population stays
the same
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SDSM: estimate sample size

m So: given |, 0, n, and a threshold for x
= we can find probability (% area under SDSM)

Std err = z-score = % (use NORMDIST)

® Now: if given |, o, threshold x, and % area,
= we can find sample size n

Experimental design: how much data needed
m Qutline:

From % area on SDSM, use NORMINV to get z

Use (x - u) to find standard error o

Use o_and o to solve for sample size n
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Estimating needed sample size

m Assume weight of packages is normally
distributed, with o=1kg

® \We want to estimate average weight to within a
precision of £50g, 95% of the time

How many packages do we need to weigh?
® NORMSINV(0.975) » z=%x1.96

+1.96 = (x - W) / O, .

Don't know u, but we want (x - p) = =500

= 0, = 509 /1.96

So o/vn = 50g / 1.96. Solving for n:

n=(1000g *1.96 /50qg)? = 1537 (round up)
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TODO

m HW3 (ch3-4): due tonight at 10pm
Remember to format as a document!
HWs are to be individual work

m Dataset description due this Tue 4 Oct
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