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●HW3 due 10pm
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Outline for todayOutline for today

 Sampling distributions
● Sampling distribution of the sample mean
● μx and σx

● Central Limit Theorem
 Uses of the SDSM

● Probability of sample avg above a threshold
● 90% confidence interval
● Estimating needed sample size
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Sampling errorSampling error

 Sampling is the process of drawing a sample 
out from a population

 Sampling error is the difference between a 
statistic calculated on the sample and the
true value of the statistic in the population

 e.g., pop. of 100 products; avg price is μ=$50
● Draw a sample of 10 products,

calculate average price to be x=$55
● We just so happened to draw 10 products 

that are more expensive than the average
● Sampling error is $5

Pop.

μ

Sample

x
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Sampling distributionSampling distribution

1)Draw one sample of size n
2)Find its sample mean x (or other statistic)
3)Draw another sample of size n; find its mean
4)Repeat for all possible samples of size n
5)Build a histogram of all those sample means

 In the histogram for the population,
each block represents one observation

 In the histogram for the sampling distribution,
each block represents one whole sample!

Pop. sample x

sample

sample

x

x

SDSM
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SDSMSDSM

 Sampling distribution of sample means
● Histogram of sample means (x) of all possible 

samples of size n taken from the population
● It has its own mean, μx, and SD, σx

 SDSM is centred around the true mean μ
● i.e., μx = μ

 If μ=$50 and our sample of 10 has x=$55,
we just so happened to take a high sample

● But other samples will have lower x
● On average, the x should be around $50
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Properties of the SDSMProperties of the SDSM

 μx = μ: centred around true mean

 σx = σ/√n: narrower as sample size increases

● For large n, any sample looks about the same
● Larger n ⇒ sample is better estimate of pop
● σx is also called the standard error

 If pop is normal, then SDSM is also normal
 If pop size N is finite and sample size n is a 

sizeable fraction of it (say >5%), need to adjust 
standard error:

σ x̄ = σ

√n √ N−n
N−1
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Central Limit TheoremCentral Limit Theorem

 In general, we won't know the shape of the 
population distribution, but

 As n gets larger, the SDSM gets more normal
● So we can use NORMDIST/INV to make 

calculations on it
 So, as sample size increases, two good things:

● Standard error decreases (σx = σ/√n)

● SDSM becomes more normal (CLT)
SDSM
@large n

SDSM
@small n:

x

Population:

x x x
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SDSM as n increasesSDSM as n increases

 @n=1, SDSM matches original population
 As n increases, SDSM gets tighter and normal
 Regardless of

shape of original
population!

 Note: pop doesn't
get more normal;
it does not change

 Only the sampling
distribution
changes

Hemist

http://hemist.com/?p=540
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SDSM: exampleSDSM: example

 Say package weight is normal: μ=10kg, σ=4kg
● Say we have to pay extra fee if the average 

package weight in a shipment is over 12kg
 If our shipment has 4 packages, what is the 

chance we have to pay fee?
● Standard error: σx = 4/√4 = 2kg

● z = (x – μx)/σx = (12-10)/2 = 1

● Area to right: 1-NORMSDIST(1)=15.87%
 Or: 1 - NORMDIST(12, 10, 2, 1)

 16 pkgs?
● Std err: σx = 4/√16 = 1kg; z = (12-10)/1 = 2

● Area to right: 1-NORMSDIST(2) = 2.28%

n=4

n=16
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SDSM: exampleSDSM: example

 Assume mutual fund MER norm: μ=4%, σ=1.8%
● Broker randomly(!) chooses 9 funds
● We want to say, “90% of the time, the avg 

MER for the portfolio of 9 funds is between 
___% and ___%.”  (find the limits)

 Lower limit: 90% in middle ⇒ 5% in left tail
● NORMSINV(0.05) ⇒ z = -1.645
● Std err: σx = 1.8/√9 = 0.6%

● z = (x – μx) / σx ⇒ -1.645 = (x – 4) / 0.6

● ⇒ lower limit is x = 4 – (1.645)(0.6) = 3.01%

 Upper: x=μ+(z)(σx) = 4 + (1.645)(0.6) = 4.99%

90%
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MER example: conclusionMER example: conclusion

 We conclude that, if the broker randomly 
chooses 9 mutual funds from the population

 90% of the time, the average MER in the 
portfolio will be between 3.01% and 4.99%

● This does not mean 90% of the funds have 
MER between 3.01% and 4.99%!

● 90% on SDSM, not 90% on orig. population
 If the portfolio had 25 funds instead of 9,

the range on avg MER would be even narrower
● But the range on MER in the population stays 

the same
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SDSM: estimate sample sizeSDSM: estimate sample size

 So: given μ, σ, n, and a threshold for x
⇒ we can find probability (% area under SDSM)

● Std err ⇒ z-score ⇒ % (use NORMDIST)
 Now: if given μ, σ, threshold x, and % area,

⇒ we can find sample size n
● Experimental design: how much data needed

 Outline:
● From % area on SDSM, use NORMINV to get z
● Use (x – μ) to find standard error σx

● Use σx and σ to solve for sample size n
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Estimating needed sample sizeEstimating needed sample size

 Assume weight of packages is normally 
distributed, with σ=1kg

 We want to estimate average weight to within a 
precision of ±50g, 95% of the time

● How many packages do we need to weigh?
 NORMSINV(0.975) → z=±1.96

● ±1.96 = (x – μx) / σx .

● Don't know μ, but we want (x – μ) = ±50g
● ⇒ σx = 50g / 1.96

● So σ/√n = 50g / 1.96.  Solving for n:
● n = (1000g * 1.96 / 50g)2 = 1537 (round up)
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TODOTODO

 HW3 (ch3-4): due tonight at 10pm
● Remember to format as a document!
● HWs are to be individual work

 Dataset description due this Tue 4 Oct
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