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Outline for todayOutline for today

 Sampling distributions
● Sampling distribution of the sample mean
● μx and σx

● Central Limit Theorem
 Uses of the SDSM

● Probability of sample avg above a threshold
● 90% confidence interval
● Estimating needed sample size
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Sampling errorSampling error

 Sampling is the process of drawing a sample 
out from a population

 Sampling error is the difference between a 
statistic calculated on the sample and the
true value of the statistic in the population

 e.g., pop. of 100 products; avg price is μ=$50
● Draw a sample of 10 products,

calculate average price to be x=$55
● We just so happened to draw 10 products 

that are more expensive than the average
● Sampling error is $5

Pop.

μ

Sample

x
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Sampling distributionSampling distribution

1)Draw one sample of size n
2)Find its sample mean x (or other statistic)
3)Draw another sample of size n; find its mean
4)Repeat for all possible samples of size n
5)Build a histogram of all those sample means

 In the histogram for the population,
each block represents one observation

 In the histogram for the sampling distribution,
each block represents one whole sample!

Pop. sample x

sample

sample

x

x

SDSM
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SDSMSDSM

 Sampling distribution of sample means
● Histogram of sample means (x) of all possible 

samples of size n taken from the population
● It has its own mean, μx, and SD, σx

 SDSM is centred around the true mean μ
● i.e., μx = μ

 If μ=$50 and our sample of 10 has x=$55,
we just so happened to take a high sample

● But other samples will have lower x
● On average, the x should be around $50
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Properties of the SDSMProperties of the SDSM

 μx = μ: centred around true mean

 σx = σ/√n: narrower as sample size increases

● For large n, any sample looks about the same
● Larger n ⇒ sample is better estimate of pop
● σx is also called the standard error

 If pop is normal, then SDSM is also normal
 If pop size N is finite and sample size n is a 

sizeable fraction of it (say >5%), need to adjust 
standard error:

σ x̄ = σ

√n √ N−n
N−1
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Central Limit TheoremCentral Limit Theorem

 In general, we won't know the shape of the 
population distribution, but

 As n gets larger, the SDSM gets more normal
● So we can use NORMDIST/INV to make 

calculations on it
 So, as sample size increases, two good things:

● Standard error decreases (σx = σ/√n)

● SDSM becomes more normal (CLT)
SDSM
@large n

SDSM
@small n:

x

Population:

x x x
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SDSM as n increasesSDSM as n increases

 @n=1, SDSM matches original population
 As n increases, SDSM gets tighter and normal
 Regardless of

shape of original
population!

 Note: pop doesn't
get more normal;
it does not change

 Only the sampling
distribution
changes

Hemist

http://hemist.com/?p=540
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SDSM: exampleSDSM: example

 Say package weight is normal: μ=10kg, σ=4kg
● Say we have to pay extra fee if the average 

package weight in a shipment is over 12kg
 If our shipment has 4 packages, what is the 

chance we have to pay fee?
● Standard error: σx = 4/√4 = 2kg

● z = (x – μx)/σx = (12-10)/2 = 1

● Area to right: 1-NORMSDIST(1)=15.87%
 Or: 1 - NORMDIST(12, 10, 2, 1)

 16 pkgs?
● Std err: σx = 4/√16 = 1kg; z = (12-10)/1 = 2

● Area to right: 1-NORMSDIST(2) = 2.28%

n=4

n=16
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SDSM: exampleSDSM: example

 Assume mutual fund MER norm: μ=4%, σ=1.8%
● Broker randomly(!) chooses 9 funds
● We want to say, “90% of the time, the avg 

MER for the portfolio of 9 funds is between 
___% and ___%.”  (find the limits)

 Lower limit: 90% in middle ⇒ 5% in left tail
● NORMSINV(0.05) ⇒ z = -1.645
● Std err: σx = 1.8/√9 = 0.6%

● z = (x – μx) / σx ⇒ -1.645 = (x – 4) / 0.6

● ⇒ lower limit is x = 4 – (1.645)(0.6) = 3.01%

 Upper: x=μ+(z)(σx) = 4 + (1.645)(0.6) = 4.99%

90%
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MER example: conclusionMER example: conclusion

 We conclude that, if the broker randomly 
chooses 9 mutual funds from the population

 90% of the time, the average MER in the 
portfolio will be between 3.01% and 4.99%

● This does not mean 90% of the funds have 
MER between 3.01% and 4.99%!

● 90% on SDSM, not 90% on orig. population
 If the portfolio had 25 funds instead of 9,

the range on avg MER would be even narrower
● But the range on MER in the population stays 

the same
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SDSM: estimate sample sizeSDSM: estimate sample size

 So: given μ, σ, n, and a threshold for x
⇒ we can find probability (% area under SDSM)

● Std err ⇒ z-score ⇒ % (use NORMDIST)
 Now: if given μ, σ, threshold x, and % area,

⇒ we can find sample size n
● Experimental design: how much data needed

 Outline:
● From % area on SDSM, use NORMINV to get z
● Use (x – μ) to find standard error σx

● Use σx and σ to solve for sample size n
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Estimating needed sample sizeEstimating needed sample size

 Assume weight of packages is normally 
distributed, with σ=1kg

 We want to estimate average weight to within a 
precision of ±50g, 95% of the time

● How many packages do we need to weigh?
 NORMSINV(0.975) → z=±1.96

● ±1.96 = (x – μx) / σx .

● Don't know μ, but we want (x – μ) = ±50g
● ⇒ σx = 50g / 1.96

● So σ/√n = 50g / 1.96.  Solving for n:
● n = (1000g * 1.96 / 50g)2 = 1537 (round up)
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TODOTODO

 HW3 (ch3-4): due tonight at 10pm
● Remember to format as a document!
● HWs are to be individual work

 Dataset description due this Tue 4 Oct
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