Ch7: Sampling Distributions

29 Sep 2011 BUSI275 Dr. Sean Ho

• HW3 due 10pm

Outline for today

Sampling distributions Sampling distribution of the sample mean • $\mu_{\overline{v}}$ and $\sigma_{\overline{v}}$ Central Limit Theorem Uses of the SDSM Probability of sample avg above a threshold • 90% confidence interval • Estimating needed sample size

BUSI275: sampling distributions

Sampling error

Sampling is the process of drawing a sample out from a population

Sampling error is the difference between a statistic calculated on the sample and the true value of the statistic in the population

• e.g., pop. of 100 products; avg price is $\mu =$ \$50

- Draw a sample of 10 products, calculate average price to be $\overline{x}=$ \$55
- We just so happened to draw 10 products that are more expensive than the average
- Sampling error is \$5

Sampling distribution

1)Draw one sample of size n
2)Find its sample mean x (or other statistic)
3)Draw another sample of size n; find its mean
4)Repeat for all possible samples of size n
5)Build a histogram of all those sample means

In the histogram for the population, each block represents one observation

In the histogram for the sampling distribution, each block represents one whole sample!

SDSM

Sampling distribution of sample means • Histogram of sample means (\mathbf{x}) of all possible samples of size n taken from the population • It has its own mean, $\mu_{\overline{v}}$, and SD, $\sigma_{\overline{v}}$ SDSM is centred around the true mean µ • i.e., μ_→ = μ If $\mu = \$50$ and our sample of 10 has x = \$55, we just so happened to take a high sample • But other samples will have lower \overline{x} On average, the x should be around \$50

Properties of the SDSM

 $\blacksquare \mu_{\overline{x}} = \mu$: centred around true mean

- $\sigma_{\overline{x}} = \sigma/\sqrt{n}$: narrower as sample size increases
 - For large n, any sample looks about the same
 - Larger $n \Rightarrow$ sample is better estimate of pop
 - $\sigma_{\overline{x}}$ is also called the standard error

If pop is normal, then SDSM is also normal
 If pop size N is finite and sample size n is a sizeable fraction of it (say >5%), need to adjust standard error:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

BUSI275: sampling distributions

Central Limit Theorem

SDSM as n increases

@n=1, SDSM matches original population

- As n increases, SDSM gets tighter and normal
- Regardless of shape of original population!
- Note: pop doesn't get more normal; it does not change
- Only the sampling distribution changes

Hemist

SDSM: example

Say package weight is normal: $\mu = 10$ kg, $\sigma = 4$ kg Say we have to pay extra fee if the average package weight in a shipment is over 12kg If our shipment has 4 packages, what is the chance we have to pay fee? n=4• Standard error: $\sigma_{z} = 4/\sqrt{4} = 2$ kg • $z = (\overline{x} - \mu_{\overline{y}})/\sigma_{\overline{y}} = (12 - 10)/2 = 1$ • Area to right: 1-NORMSDIST(1)=15.87% n=16 Or: 1 - NORMDIST(12, 10, 2, 1) 16 pkgs? • Std err: $\sigma_{z} = 4/\sqrt{16} = 1$ kg; z = (12-10)/1 = 2 • Area to right: 1-NORMSDIST(2) = 2.28%**BUSI275: sampling distributions** 29 Sep 2011

SDSM: example

90%

Assume mutual fund MER norm: μ =4%, σ =1.8%

Broker randomly(!) chooses 9 funds

 We want to say, "90% of the time, the avg MER for the portfolio of 9 funds is between % and ___%." (find the limits)

• Lower limit: 90% in middle \Rightarrow 5% in left tail

- NORMSINV(0.05) \Rightarrow z = -1.645
- Std err: $\sigma_{\bar{x}} = 1.8/\sqrt{9} = 0.6\%$

• $z = (\overline{x} - \mu_{\overline{x}}) / \sigma_{\overline{x}} \Rightarrow -1.645 = (\overline{x} - 4) / 0.6$

• \Rightarrow lower limit is $\overline{x} = 4 - (1.645)(0.6) = 3.01\%$

Upper: $\overline{x} = \mu + (z)(\sigma_{\overline{x}}) = 4 + (1.645)(0.6) = 4.99\%$

MER example: conclusion

We conclude that, if the broker randomly chooses 9 mutual funds from the population 90% of the time, the average MER in the portfolio will be between 3.01% and 4.99% This does not mean 90% of the funds have MER between 3.01% and 4.99%! 90% on SDSM, not 90% on orig. population If the portfolio had 25 funds instead of 9, the range on avg MER would be even narrower • But the range on MER in the population stays the same

SDSM: estimate sample size

So: given μ, σ, n, and a threshold for x

 we can find probability (% area under SDSM)
 Std err ⇒ z-score ⇒ % (use NORMDIST)

 Now: if given μ, σ, threshold x̄, and % area,

 we can find sample size n
 Experimental design: how much data needed

 Outline:

- From % area on SDSM, use NORMINV to get z
- Use $(\overline{x} \mu)$ to find standard error $\sigma_{\overline{x}}$
- Use $\sigma_{\overline{x}}$ and σ to solve for sample size n

Estimating needed sample size

- Assume weight of packages is normally distributed, with σ=1kg
- We want to estimate average weight to within a precision of ±50g, 95% of the time
 - How many packages do we need to weigh?
- NORMSINV(0.975) \rightarrow z=±1.96
 - $\pm 1.96 = (\overline{x} \mu_{\overline{x}}) / \sigma_{\overline{x}}$.
 - Don't know μ , but we want $(\overline{x} \mu) = \pm 50g$
 - $\Rightarrow \sigma_{\overline{x}} = 50g / 1.96$
 - So $\sigma/\sqrt{n} = 50g / 1.96$. Solving for n:
 - n = (1000g * 1.96 / 50g)² = 1537 (round up)

HW3 (ch3-4): due tonight at 10pm
 Remember to format as a document!
 HWs are to be individual work
 Dataset description due this Tue 4 Oct

