12.1: One-way ANOVA

8 Nov 2011 BUSI275 Dr. Sean Ho

HW7 due tonight
Please download: 18-Delivery.xls

Outline for today

One-way ANOVA (1 nominal predictor) Assumptions of ANOVA Concepts of ANOVA: between vs. within Global F-test Example: Delivery.xls Follow-up Analysis Post-hoc test using Tukey-Kramer Example: Delivery.xls ANOVA and regression

ANOVA: Analysis of Variance

1 DV (scale) and one or more IVs (nominal) One-way ANOVA: just one IV, with k levels e.g., does country affect avg purchase amt? Groups: Canada, US, China, UK, etc. The independent-groups t-test is a special case • One IV that is dichotomous ANOVA performs one global F-test to assess if the predictor has any effect on the outcome • $H_0: \mu_1 = \mu_2 = \dots = \mu_k$ Omnidirectional (generalization of 2-tailed) Follow-up tests then identify which groups differ

Assumptions: parametricity

DV is continuous

If DV is dichotomous, try Logistic Regression

• If all vars are nominal, try Log-Linear analysis Observations are independent, and Groups (levels of the IV) are independent DV is normally distributed within each group If not, try transforming the DV Variance (SD) of DV in each group is roughly similar across all the groups (homoscedasticity) Not crucial if n in each group is large and if balanced design: similar n in each group

ANOVA concepts

How much of variability in purchase amount is due to country of origin?

SS_{tot} = SS_{Country} + SS_{residual}
SS_{Country} is "between-group" variation (SSB)
SS_{residual} is "within-group" variation (SSW)

Do the group means differ significantly?
 F-test, *p*-value
 Fraction of variability fraction of variability

η² (equiv. to R²)

• Model: $Y = (offset due to group) + (residual \epsilon)$

-	Group (Between)	Residual (Within)		
SS	$SSB = \sum_{i=1}^{k} n_i (\bar{y}_i - \bar{y})^2$	$SSW = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$		
df	k - 1	n - k		
MS = SS/df	MSB = SSB / (k - 1)	MSW = SSW / (n - k)		

Test statistic is F = MSB / MSW

- Model vs. residual (as in regression!)
- Use FDIST() with two dfs to get p-value

BUSI275: One-way ANOVA

Example: Delivery minivans

Dataset: 18-Delivery.xls (see p.496, #12-15) DV: operating cost per mile • IV: manufacturer (3 companies) • Unit of observation: one minivan (total n=13) • ANOVA table: df = (2, 9)• SS = (6.07, 3.45), MS = (3.04, 0.38)• \Rightarrow F = 7.91, so p = 0.010 Reject H₀: operating costs per mile do differ significantly depending on manufacturer

Follow-up analysis

ANOVA's global F test is an omnibus test: Just says there is a difference somewhere Doesn't tell us which groups differ! There may be sets of groups that don't differ significantly from each other Follow-up analysis tries to find these • Post-hoc: try all pairs of groups The multiple comparisons problem: "shotgun" approach leads to inflated Type I error • Planned contrasts: if theory guides us to try certain comparisons of groups

Post-hoc: Tukey-Kramer

Considers all possible pairings of groups • (Can vs. US), (Can vs. Other), (US vs. Other) In general, k*(k-1) pairings! From table in Appendix J, find critical value for q Test statistic for studentized range (like F) • Use α (.05 or .01) and both dfs to look up For each pairing (group i vs. group i): • Find standard error: $SE = \sqrt{\frac{MSW}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$ Compare difference of means: |x_i - x_i| against critical range: (q)*(SE) If larger, then these groups differ significantly **BUSI275: One-way ANOVA** 8 Nov 2011

9

Tukey-Kramer: Delivery.xls

Which manufacturers diff	er signif	ficant	ly?	
Appendix J (p.867): α=0.05 (95% conf)				
• df = (2, 9) ⇒ q = 3.20	0			
Calculate SE for each pairing			-2	
Calculate critical range	q	3.20		
for each pair: g*SE	Pair:	1 vs 2	1 vs 3	2 vs 3
	SE	0.303	0.279	0.317
Compare against	Crit Range:	1.024	0.940	1.071
mean differences:	Mean diff:	0.633	1.175	1.808
	Desult		TDUE	TOUL

Conclusion: manufacturer 3 is the odd one out, with significantly higher operating costs

Result

FALSE

IRUE

IRUE

ANOVA and regression

With only 1 dichotomous IV: Ð **Y**_{CA} ANOVA = t-test = regression Code the IV as 0/1 US Can • Intercept $b_0 = mean of group 0 (y_0)$ • Slope $b_1 = difference$ of means • Effect size $n^2 = R^2$ If the IV has multiple levels, use dummy coding: Choose a reference level Cty US Ot Make k-1 dummy variables, for Ca 📫 🕕 each of the other levels: each coded 0/11 Ot 📥 🕕 • Use multiple regression **BUSI275: One-way ANOVA** 8 Nov 2011 11

HW7 (ch10,14): due tonight Projects: Acquire data if you haven't already If waiting for REB: try making up toy data so you can get started on analysis Background research for likely predictors of your outcome variable Read up on your chosen method of analysis (regression, time-series, logistic, etc.)

