
Arrays, InheritanceArrays, Inheritance

27 Jan 2011
CMPT166
Dr. Sean Ho
Trinity Western University

27 Jan 2011CMPT166: arrays, inheritance 2CMPT166: arrays, inheritanceCMPT166: arrays, inheritance

Outline for todayOutline for today

 Unit testing with JUnit
● FruitStand example

 Arrays
● Declaring, allocating, initializing
● Iterating over arrays

 Inheritance
● “Has a” vs. “Is a” vs. “Is a kind of”
● Overriding methods
● Polymorphism

27 Jan 2011CMPT166: arrays, inheritance 3CMPT166: arrays, inheritanceCMPT166: arrays, inheritance

Class design: testbedClass design: testbed

 Main class (Student): attribs, methods, constr.
 public class Student {

➔ String name;
➔ short ID;
➔ public Student() {…}

 Testbed class (StudentTest):
● main() and other methods create instances of

Student and call methods:
 public class StudentTest {

➔ public static void main(String args[]) {
● Student s1 = new Student();
● s1.setName(“Joe Smith”);

27 Jan 2011CMPT166: arrays, inheritance 4CMPT166: arrays, inheritanceCMPT166: arrays, inheritance

Unit testing with JUnit4Unit testing with JUnit4

 Create a separate class to hold your testcases
 import org.junit.Test;
 import static org.junit.Assert.*;

 Each test case is a method: annotate with @Test
● Create some objects from your class
● Call some methods on your objects
● Make assertions: assertEquals(a, b);

 Run the test cases:
● In Eclipse: New → JUnit Test Case, and Run
● org.junit.runner.JUnitCore.runClasses(TestClass1.class);

27 Jan 2010CMPT166: Date, arrays 5CMPT166: Date, arraysCMPT166: Date, arrays

Arrays in JavaArrays in Java

 Aggregate (compound/container) data type
 All entries must have same type
 Size of array is fixed when array is allocated

● But need not be known at compile-time
● Arrays can be dynamically created

 Location in memory is usually contiguous
 Index into array using integer indices from 0 up to

(size of array)-1
● Indexing out-of-bounds raises

ArrayIndexOutOfBoundsException

27 Jan 2010CMPT166: Date, arrays 6CMPT166: Date, arraysCMPT166: Date, arrays

Working with arraysWorking with arrays

 Declaring arrays:
 int numApples[]; // or: int[] numApples;

 Allocate array in memory:
 numApples = new int[10];

 Initializing array entries:
 numApples[3] = 15;

 Size of array:
 numApples.length // returns 10

27 Jan 2010CMPT166: Date, arrays 7CMPT166: Date, arraysCMPT166: Date, arrays

Array initializers and constantsArray initializers and constants

 Initialize an array on one line:
 int numApples[] = {5, 3, 12, 0, 3};

 Declare constants using the keyword final:
 final int numApples[] = {5, 3, 12, 0, 3};
 final float pi = 3.14159265358979323846264;

● Values cannot be changed
(even by code in the same class)

● Initial value must be given in-line with
declaration

27 Jan 2010CMPT166: Date, arrays 8CMPT166: Date, arraysCMPT166: Date, arrays

Multidimensional arraysMultidimensional arrays

 The element type of an array can be any type,
including objects, including other arrays:

int image[][];

image = new int[width][height];

for (int x=0; x<width; x++)

for (int y=0; y<width; y++)
image[x][y] += 10;

 Rows may be different lengths:
image = new int[width][];

for (int x=0; x<width; x++)

image[x] = new int[x]; // triangular array

27 Jan 2010CMPT166: Date, arrays 9CMPT166: Date, arraysCMPT166: Date, arrays

Iterating through arraysIterating through arrays

 Iterate through an array with a for loop:
for (int idx=0; idx < array.length; idx++)

sum += array[idx];
 Java has an enhancement to the for loop:

for (int elt : array)

sum += elt;
 But note elt is a copy of each element:

● Can't use this to modify array:
for (int elt : array)

elt *= 2; // doesn't change array!

29 Jan 2010CMPT166: inheritance 10CMPT166: inheritanceCMPT166: inheritance

Superclasses and subclassesSuperclasses and subclasses

 Attribute: “has a” relationship:
● A Car has a steeringWheel

 Subclass: “is a kind of” relationship:
● A Convertible is a kind of Car
● Inheritance relationships form

tree-like class hierarchies
● “extends”: more specific,

less inclusive, more complex
 Polymorphism: write once

● changeOil() method works on
all Cars, not just Convertibles

Community
Member

Alumni

Student

Employee

Faculty Staff

Administrator Teacher

29 Jan 2010CMPT166: inheritance 11CMPT166: inheritanceCMPT166: inheritance

Why use inheritance?Why use inheritance?

 Reusability
● Create new classes from existing ones

 Absorb attributes and behaviours
 Add new capabilities

 Polymorphism
 Enable developers to write programs with a general

design
 A single program can handle a variety of existing and

future classes
 Aids in extending program, adding new capabilities

29 Jan 2010CMPT166: inheritance 12CMPT166: inheritanceCMPT166: inheritance

Subclassing in JavaSubclassing in Java

 When declaring a class, indicate its superclass
(parent):

 public class Dog extends Pet {

● A Dog is a kind of Pet
● Inherits everything Pet has
● Can add Dog-specific attribs/methods
● Can override general Pet methods with Dog-

specific versions

29 Jan 2010CMPT166: inheritance 13CMPT166: inheritanceCMPT166: inheritance

Using subclass instancesUsing subclass instances

 An instance of a subclass can be treated as an
instance of the superclass:

 Pet fluffy = new Dog();

● Cannot do vice-versa:
 Dog myDog = new Pet(); // doesn't work!

 instanceof checks the class of an object:
 if (fluffy instanceof Dog) { …

 A superclass reference may be downcast back to
the subclass if appropriate:

 // this is ok because fluffy is really a Dog
 Dog myDog = (Dog) fluffy;

Pet

Dog

29 Jan 2010CMPT166: inheritance 14CMPT166: inheritanceCMPT166: inheritance

Overriding methodsOverriding methods

 A subclass can override a method defined by the
superclass
● Every Pet knows how to speak()
● But Dogs speak() differently from Cats
● Subclasses override the speak() method

 Late binding: which version of speak() to use?
● Decided at run-time

 Polymorphism: same code works on several
different types, all subclasses of the same parent

 Contrast with overloading (type signature)

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

