
Design Patterns (1)Design Patterns (1)

31 March 2011
CMPT166
Sean Ho
Trinity Western University

See also:
Vince Huston,
JavaCamp,
OODesign.com

http://www.vincehuston.org/dp/
http://www.javacamp.org/designPattern/
http://www.oodesign.com/

31 Mar 2011CMPT166: design patterns 2

Outline for todayOutline for today

 UML Sequence diagrams
● Lifecycles, if/else blocks, async messages

 Design Patterns
● Creational patterns

 Factory Method
 Abstract Factory
 Builder
 Prototype
 Singleton

7 Apr 2010CMPT166: design patterns 3

UML and reusable designsUML and reusable designs

 Diagrams for
● Use-case scenarios

● Component / CRC diagrams

● Class diagram

● Sequence diagram

● More: state diagrams, activity diagrams, etc.
 Christopher Alexander, “Notes on the Synthesis of Form”,

Harvard University Press, 1964

 Ref: Gamma, Helm, Johnson, Vlissides,
“Design Patterns: Elements of Reusable OO Software”

http://en.wikipedia.org/wiki/Design_Patterns

10 Mar 2010CMPT166: sequence diagrams 4

Sequence diagramsSequence diagrams

 Describes behaviour via messages passed
● Lower-level than use-casesuse-cases

 Each object / actor / comp. has a lifeline

 Messages: arrows Activities: vertical box

Caller Phone Phone Recipient
Pick up

Dial tone

Dial

Ring phone
Ring

Ring notify

Pick up

“Hello?”

10 Mar 2010CMPT166: sequence diagrams 5

Activity lifecycleActivity lifecycle

 Each vertical box represents an activity
performed by the actor / object / comp.

 Vertical length is duration of the activity

 Messages may trigger activities to start

 On completion,
an activity
may trigger a
return message
(dotted)

Wikipedia: UML

http://en.wikipedia.org/wiki/Unified_Modeling_Language

10 Mar 2010CMPT166: sequence diagrams 6

Object lifecycleObject lifecycle

 When an object dies, an 'X' marks the end
of its lifeline:

Wikipedia

http://en.wikipedia.org/wiki/Sequence_diagram

10 Mar 2010CMPT166: sequence diagrams 7

Self-called messagesSelf-called messages

 An object may send a message to itself:
● Arrow loops back to itself

 A message may
also be sent
multiple times:

 Usually put loops
in a shaded box

10 Mar 2010CMPT166: sequence diagrams 8

If/else clausesIf/else clauses

 Put bothPut both
cases incases in
dotted boxesdotted boxes,,
with thewith the
if conditionif condition

TraceModeler

http://www.tracemodeler.com/articles/a_quick_introduction_to_uml_sequence_diagrams

10 Mar 2010CMPT166: sequence diagrams 9

Asynchronous comm.Asynchronous comm.

 Synchronous messages (full arrowhead)
require recipient to be listening right then

 Asynchronous messages (half arrowhead)
can be read by
recipient at
a later time
● Phone call

vs. postal mail

● Chat vs. email

10 Mar 2010CMPT166: sequence diagrams 10

UML Software ToolsUML Software Tools

 Eclipse UML2Tools plugin (Model Dev. Tools)
● Help → Install New… → Add …

Paste URLs for MDT and EMF

● Other plug-ins (M2T) can auto-generate code
from your diagrams!

 Dia: free diagram editor (not just UML)

 IBM Rational Modeler
● free version of commercial Rhapsody prod.

● Complex but complete UML modelling tool

 Or draw your own by hand!

http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://www.eclipse.org/modeling/mdt/updates/
http://live.gnome.org/Dia
http://www-01.ibm.com/software/awdtools/modeler/

7 Apr 2010CMPT166: design patterns 11

Design patternsDesign patterns

 A pattern is a named abstractionabstraction
● from a recurring concrete form

● that expresses the essence of

● a proven general solution

 A pattern has three parts:
● some recurring problem from the real world

● the context of the problem (when to solve it)

● the rule telling us how to solve it

 Describes a class of problems
and how to solve them

7 Apr 2010CMPT166: design patterns 12

Classes of patternsClasses of patterns

 Conceptual/architectural
● Structural organization of software systems

● Set of predefined components

● Relationships between components

 Design
● How to refine each component

● Commonly recurring structure of components

 Programming idiom
● How to code a particular component feature

7 Apr 2010CMPT166: design patterns 13

Classes of patterns (GoF)Classes of patterns (GoF)

 Creational
● Interfaces to

generate
new objects

 Structural
● How to organize

a large system
in components

 Behavioural
● How components interact with each other to

accomplish a common goal

7 Apr 2010CMPT166: design patterns 14

Creational patternsCreational patterns

 Factory Method: create a variety of objects

 Abstract Factory: group of related obj
factories

 Builder: delegate creation of components

 Prototype: clone a template object

 Singleton: enforce having only one instance

7 Apr 2010CMPT166: design patterns 15

Creational: factory methodCreational: factory method

 An interface to create an object,
but without specifying which subclass

 Analogy: plastic injection-mould
determines shape of output

 e.g., need to create a new Person; don't
know in advance if it's Student, Staff, or
Faculty PersonCreator

makePerson()

StudentCreator
makePerson()

Person

Student

subclass subclass

creates

JavaCamp,
Wikipedia

http://www.javacamp.org/designPattern/factory.html
http://en.wikipedia.org/wiki/Factory_method_pattern

7 Apr 2010CMPT166: design patterns 16

Creational: abstract factoryCreational: abstract factory

 Family of similar factories
● Client code doesn't know/care which concrete

factory is used

● May use a collection of factory methods

 Analogy: press to stamp out auto parts

 e.g., adaptable look-and-feel of GUI widgets
GUIFactory

newScrollbar()

MacGUIFactory
newScrollbar()

Scrollbar

MacScrollbarcreates

JavaCamp,
Wikipedia

http://www.javacamp.org/designPattern/abstractfactory.html
http://en.wikipedia.org/wiki/Abstract_factory_pattern

7 Apr 2010CMPT166: design patterns 17

Creational: builderCreational: builder

 Separate construction of a complex object
from its representation
● Analogy: assembling fast food kids' meals

 Director class parses the request and
representationn

 Hierarchy of Builders
make the objects

JavaCamp,
Wikipedia

http://www.javacamp.org/designPattern/builder.html
http://en.wikipedia.org/wiki/Builder_pattern

7 Apr 2010CMPT166: design patterns 18

Creational: prototypeCreational: prototype

 Create new objects by copying a prototype
● Analogy: biological cell division

● e.g., sheet-music editor: copy and paste notes
 Staves are objects; each note is an object

 Design each object so it knows how to copy
itself: clone() method
● Copy constructor

MusicElement
clone()

Note
clone()

Rest
clone()

Fermata
clone()

JavaCamp,
Wikipedia

http://www.javacamp.org/designPattern/prototype.html
http://en.wikipedia.org/wiki/Prototype_pattern

7 Apr 2010CMPT166: design patterns 19

Creational: singletonCreational: singleton

 Ensure a class only has one instance,
and provide a global point of access to it

 Analogy: only one Prime Minister

 Can implement using private constructor
● Provide a static get method for the singleton

public class PrimeMinister {

private PrimeMinister thePM;
private PrimeMinister() { /* create new PM */ };
public static getPM() {

if (!thePM) thePM = new PrimeMinister();
return thePM; }

JavaCamp,
Wikipedia

http://www.javacamp.org/designPattern/singleton.html
http://en.wikipedia.org/wiki/Singleton_pattern

	Presentation Title
	Sample Content
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

