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Mathematical logic

® Some notation:
=A, or 'A: “not A"
+ If A ="Itis Tuesday”, then —A = “It is not Tuesday”
A = B: “Aimplies B”; “if A, then B”

¢+ The contrapositive of “A = B" Is “=B = —-A"

> Contrapositive is equivalent to original statement

> “If Tues, then meatloaf”
“If not meatloaf, then not Tues”

¢ The converse of “A = B"” Is “=A = —-B"

> Converse is not equivalent to original statement
> converse: “If not Tues, then not meatloaf”

V: “for all”: e.q., “x2>x, Vx> 1"

. 1l = ”n ., { 2 17
2, o “there exists”: e.g., “d x s.t. x> < X
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Discrete math review /
m f(x) iIs monotone increasing

(“non-decreasing”) Iff x <y = f(x) = f(y)
m f(Xx) Is strictly increasing iff x < y = f(x) < f(y)
®ma mod n (in programming: “a % n")
Is the remainder of a when divided by n
¢+ 17 mod5 =2
mlim  f(x) = b (“limit as x goes to a of f(x) is b”)
means V €>0, 4 6>0: (|x - a] < 0) = (|f(x) - b| < ¢€)
mlim__ f(n) = b (“limit as n goes to « of f(n) is b")
means V €>0, 3 n: (n > n ) = (|f(n) - b| < ¢€)
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Math review: iterated functions

m [terated functions (e.qg., recursion):

f(x): the function f applied | times to x
o F(F(FC ... f(x) ... )))
+ Not the same as f'(x) = (f(x))'
¢+ e.qg., l0g?(1000) = log(log(1000) = log(3) = 0.477
> but log?(1000) = (log(1000))? = 32 =9
+ f9(x) is defined to be just x (apply f zero times)
m [terated log: lg*(n) = min(1=0 : Ig¥(n) = 1)

“number of times Ig needs to be applied to n
until the resultis = 1”

+ 1g*(16) = 3:1g(lg(lg(16))) = Ig(lg(4)) = 19(2) = 1
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Fibonacci and golden ratio

Y

®m The nt Fibonacci number B - S
Start with F, =0, F. = 1
«0,1,1, 2, 3,5, 8, 13, 21, ...
> (also see Lucas numbers: F, = 2)
m Golden ratio ¢ (and conjugate ¢) satisfy x? = x + 1
e p=(1++vV5)2=1.61803... and -0.61803...
m #3.2-7 proves that F_ = (¢" - ¢") / V5

N

+ The second part |¢"| / V5 < V2, el

> i.e., F_=round( ¢"/vV5)

mivmy > 9grows exponentially!
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Proving asymptotic behaviour

me.g., p.52 #3.1-2: show that for all constants a, b,
with b>0: (n + a)®> = 6(n")

I I . b b b
l.e., findn, c,c:V¥n>n, cn’>=<(n+a)°=cn
Find lower and upper bounds on (n + a)®

m We observe that n+a = n/2 if n > 2|a|,
and that n+a = 2n if n > |a|

SO n/2 = n+a =< 2n, as long as n > 2|a|
® Then by the monotonicity of x° (x>0, b>0),
(n/2)> = (n + a)*> = (2n)°, when n > 2|a|
m So we pick n, = 2|al, ¢, = 2", and c, = 2°.
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Proving asymptotic behaviour

me.g., p.62 #3-3: (lg n)! = w(n?)
Approach: take |g of both sides
LHS: use Stirling: n! = v(2nn) (n/e)" (1 + 6(1/n))
¢ = |g(n!) = O6(n lg n) (p.58, Eq 3.19)

+=1g((lgn)l')=0((gn)lg(lgn))
> Substitute n - Ig n and use monotonicity of Ig

RHS: Ig(n3) = 3 (lg n)
+ lg(lg n) = w(3), so now put it together:

mumnw)-eumnHmMnn
= w(3 Ig n)
= w(lg( n?))

Hence, by monotonicity of Ig, (lg n)! = w(n?)
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Mathematical induction

m Deduction: general principles = specific case
m Induction: representative case = general rule
® Needs at least two axioms (givens):

Base case: starting point, e.qg., rule at n=1

Inductive step: if the rule holds at some n,
then it also holds at n+1

®m From these two axioms, we prove that the given
rule holds for all (positive) n
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Proof by induction: example

m Last time, we mentioned Gauss' formula for
1+2+...+(Nn-1)+n=(n)(n+1)/2

m Now we prove it by induction:

m Proof of base case (n=1): 1 = (1)(1+1)/2

m Proof of inductive step:
Assume: 1 + ... + n = (n)(n+1)/2
Want to prove: 1 + ... + (n+1) = (n+1)(n+2)/2
l.e., prove: (n )(n+1)/2 + (n+1) = (n+1)(n+2)/2

)

¢ (N+1)(n+2)/2 = (N*+3n+2)/2

= ( (n’+n) + (2n+2) )/2
(n?+n)/2 + (2n+2)/2
- n(n+1)/2 + (n+1)
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Induction for recurrences

® Proof by induction also can apply to recurrences:
me.g., complexity of merge sort:

T(1) = 6(1), and

T(n) = 2T(n/2) + 8(n)

m |If we have a “guess” about the solution to T(n),
we can prove by induction if that guess is correct:

m Guess: T(n) = 6(n lg(n))
® Proof:

Base case: T(1) = 6(1 Ig(1) ) = 6(1)
(I.e., constant time)

, Inductive step: (next slide)
s
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Inductive proof for merge sort:

m Assume: T(m) = 8(m Ig(m)), for m = n-1
+ In fact, can assume this holds for all m < n
m Want to prove: T(n) = 6(n lg(n))
+ l.e., for big n, there exist c, ¢, such that
c,(n lg(n)) = T(n) = c,(n Ig(n))

mT(n) =2T(n/2) + 68(n) (from the recurrence)
e+ »>3c, c,:2T(n/2) + c,(n) = T(n) = 2T(n/2) + c,(n)
mbut T(n/2) = 8( (n/2) lg(n/2) ), so
e =>3dc,, C,: c,(n/21g(n/2)) = T(n/2) = c,(n/2 Ig(n/2))
e = (c,/2)(nlg(n) - nlg2) = T(n/2) = c,(...)
" e = (c,/2)(nlg(n)) - (c, 1g2 /2)n = T(n/2) = c,(...)
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Inductive proof, continued

m Combining the two, 4 c,, c,, c,, ¢, such that:
¢ 2T(n/2) + c,(n) = T(n) = 2T(n/2) + c,(n)
e = 2(c,/2)(n lg(n)) - 2(c, Ig2 / 2)n + c,(n) = T(n) = ...
e > C,(nlg(n))-(c, 1g2 + c)n = T(n) = ...
¢+ = C,(nlg(n)) - (2c)n = T(n) = ¢,(n lg(n)) - (2¢,)n

+ = C,(nlg(n)) = T(n) = c,(n lg(n))
LHS of last step: just need c,>0

RHS of last step: we can't choose ¢, c,,

but we can find an n, such that for all n>n,

the c,(n lg(n)) term overwhelms the (2c,)n term
,%irﬁ[,k].i]s. proves that T(n) = 8(n Ig(n))
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Master method for recurrences

m |f the recurrence has this specific form:
T(n) = a T(n/b) + f(n)
¢ e.g., mergesort:a=2,b =2, f(n) =06(n)
® Then compare f(n) with n'c9-bt@
If f(n) = B(n'e9-Plal):
+ Leaves/roots balanced: T(n) = 6(n'"9->@ |g(n))
Else if f(n) = O(n'e9->@-¢) for some €>0,
+ Leaves dominate the work: T(n) = 6(n'09-b@)

Else if f(n) = Q(n'°9-b@+e) for some >0
and a f(n/b) = c f(n) for some c<1 and big n,
¢+ Roots dominate the work: T(n) = 0(f(n))
* . e Regularity condition is fine for, e.g., f(n) = n*
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Master method: examples

m Merge sort: T(n) = 2T(n/2) + 6(n)
¢ a=2, b=2, f(n) = 6(n)
f(n) = B8(n) = B(n'°9-22))
+ so leaves and roots contribute work equally
= T(n) = B(n"9-°® Ig(n)) = B(n Ig(n))
m Strassen matrix multiply: T(n) = 7T(n/2) + 6(n?)
¢ a=7/, b=2, f(n) = 6(n?)
f(n) = B8(n?) = O(n'o-=17)
+ log,7 = 2.8, so pick an € between 0 and 0.8

¢+ Leaves dominate the work
— T(n) — e(nlog_2(7)) ~ e(n2.8)
Y
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Gaps in master thm coverage

m Not all recurrences alT(n/b) + f(n) work in master!
e.g., T(n) = 2T(n/2) + n lg(n)
¢ n lg(n) # 6(n'9-2(2)) = B(n)
* nlg(n) = O(nt¢), for any €>0

+ nlg(n) # Q(nt*e), for any €>0
(because Ig(n) # Q(n¢) for any €>0)

m Polylog extension to master theorem:
If f(n) = B(n'°e-b@ |gX(n))
+ where Ig4(n) = (Ig(n))k
¢ Then T(n) = 6(n'°9->@ [gk+i(n))
(old case was with k=0)
»m Above example: T(n) = 68(n lg(n))
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