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Outline for todayOutline for today
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● Iterated functions and Fibonacci

 Mathematical proofs
● Proving asymptotic behaviour

 ch4: Solving recurrences
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Mathematical logicMathematical logic

 Some notation:
● ¬A, or !A: “not A”

 if A = “it is Tuesday”, then ¬A = “it is not Tuesday”

● A ⇒ B: “A implies B”; “if A, then B”
 The contrapositive of “A ⇒ B” is “¬B ⇒ ¬A”

➔ Contrapositive is equivalent to original statement
➔ “If Tues, then meatloaf” ⟺

“If not meatloaf, then not Tues”
 The converse of “A ⇒ B” is “¬A ⇒ ¬B”

➔ Converse is not equivalent to original statement
➔ converse: “If not Tues, then not meatloaf”

● ∀: “for all”: e.g., “x2 > x, ∀ x > 1”
● ∃: “there exists”: e.g., “∃ x s.t. x2 < x”
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Discrete math reviewDiscrete math review

 f(x) is monotone increasing
(“non-decreasing”) iff x < y ⇒ f(x) ≤ f(y)

 f(x) is strictly increasing iff x < y ⇒ f(x) < f(y)
 a mod n (in programming: “a % n”)

is the remainder of a when divided by n
 17 mod 5 = 2

 limx→af(x) = b (“limit as x goes to a of f(x) is b”)
means ∀ ε>0, ∃ δ>0: (|x – a| < δ) ⇒ (|f(x) – b| < ε)

 limn→∞f(n) = b (“limit as n goes to ∞ of f(n) is b”)
means ∀ ε>0, ∃ n0: (n > n0) ⇒ (|f(n) – b| < ε)
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Math review: iterated functionsMath review: iterated functions

 Iterated functions (e.g., recursion):
● f(i)(x): the function f applied i times to x

 f(f(f( … f(x) … )))
 Not the same as fi(x) = (f(x))i

 e.g., log(2)(1000) = log(log(1000) = log(3) ≈ 0.477
➔ but log2(1000) = (log(1000))2 = 32 = 9

 f(0)(x) is defined to be just x (apply f zero times)

 Iterated log: lg*(n) = min( i≥0 : lg(i)(n) ≤ 1 )
● “number of times lg needs to be applied to n 

until the result is ≤ 1”
 lg*(16) = 3: lg(lg(lg(16))) = lg(lg(4)) = lg(2) = 1
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Fibonacci and golden ratioFibonacci and golden ratio

 The nth Fibonacci number
is Fn = Fn-1 + Fn-2

● Start with F0 = 0, F1 = 1

 0, 1, 1, 2, 3, 5, 8, 13, 21, …
➔ (also see Lucas numbers: F0 = 2)

 Golden ratio φ (and conjugate φ) satisfy x2 = x + 1
 φ = (1 ± √5)/2 ≈ 1.61803... and -0.61803...

 #3.2-7 proves that Fn = (φn – φn) / √5

 The second part |φn| / √5 < ½,
so Fn = ⎣ φn/√5 + ½ ⎦

➔ i.e., Fn = round( φn/√5 )
➔ grows exponentially!
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Proving asymptotic behaviourProving asymptotic behaviour

 e.g., p.52 #3.1-2: show that for all constants a, b, 
with b>0: (n + a)b = Θ(nb)

● i.e., find n0, c1, c2: ∀ n>n0, c1n
b ≤ (n + a)b ≤ c2n

b

● Find lower and upper bounds on (n + a)b

 We observe that n+a ≥ n/2 if n > 2|a|,
and that n+a ≤ 2n if n > |a|
● so n/2 ≤ n+a ≤ 2n, as long as n > 2|a|

 Then by the monotonicity of xb (x>0, b>0),
● (n/2)b ≤ (n + a)b ≤ (2n)b, when n > 2|a|

 So we pick n0 = 2|a|, c1 = 2-b, and c2 = 2b.
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Proving asymptotic behaviourProving asymptotic behaviour

 e.g., p.62 #3-3: (lg n)! = ω(n3)
● Approach: take lg of both sides
● LHS: use Stirling: n! = √(2πn) (n/e)n (1 + Θ(1/n))

 ⇒ lg(n!) = Θ(n lg n) (p.58, Eq 3.19)
 ⇒ lg( (lg n)! ) = Θ( (lg n) lg(lg n) )

➔ Substitute n → lg n and use monotonicity of lg

● RHS: lg(n3) = 3 (lg n)
 lg(lg n) = ω(3), so now put it together:

● lg( (lg n)! ) = Θ( (lg n) lg(lg n) )
= ω(3 lg n)
= ω(lg( n3 ))

● Hence, by monotonicity of lg, (lg n)! = ω(n3)
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Mathematical inductionMathematical induction

 Deduction: general principles ⟹ specific case
 Induction: representative case ⟹ general rule
 Needs at least two axioms (givens):

● Base case: starting point, e.g., rule at n=1
● Inductive step: if the rule holds at some n,

then it also holds at n+1

 From these two axioms, we prove that the given 
rule holds for all (positive) n
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Proof by induction: exampleProof by induction: example

 Last time, we mentioned Gauss' formula for
● 1 + 2 + … + (n-1) + n = (n)(n+1)/2

 Now we prove it by induction:
 Proof of base case (n=1): 1 = (1)(1+1)/2
 Proof of inductive step:

● Assume: 1 + … + n = (n)(n+1)/2
● Want to prove: 1 + … + (n+1) = (n+1)(n+2)/2
● i.e., prove: (n)(n+1)/2 + (n+1) = (n+1)(n+2)/2

 (n+1)(n+2)/2 = (n2+3n+2)/2
= ( (n2+n) + (2n+2) )/2
= (n2+n)/2 + (2n+2)/2
= n(n+1)/2 + (n+1)
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Induction for recurrencesInduction for recurrences

 Proof by induction also can apply to recurrences:
 e.g., complexity of merge sort:

● T(1) = θ(1), and
● T(n) = 2T(n/2) + θ(n)

 If we have a “guess” about the solution to T(n), 
we can prove by induction if that guess is correct:

 Guess: T(n) = θ(n lg(n))

 Proof:
● Base case: T(1) = θ(1 lg(1) ) = θ(1)

(i.e., constant time)
● Inductive step: (next slide)
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Inductive proof for merge sort:Inductive proof for merge sort:

 Assume: T(m) = θ(m lg(m)), for m = n-1
 In fact, can assume this holds for all m < n

 Want to prove: T(n) = θ(n lg(n))
 i.e., for big n, there exist c1, c2 such that

c1(n lg(n)) ≤ T(n) ≤ c2(n lg(n))

 T(n) = 2T(n/2) + θ(n) (from the recurrence)
 ⇒ ∃ c1, c2: 2T(n/2) + c1(n) ≤ T(n) ≤ 2T(n/2) + c2(n)

 but T(n/2) = θ( (n/2) lg(n/2) ), so
 ⇒ ∃ c3, c4: c3(n/2 lg(n/2)) ≤ T(n/2) ≤ c4(n/2 lg(n/2))

 ⇒ (c3/2)(n lg(n) – n lg2) ≤ T(n/2) ≤ c4(...)

 ⇒ (c3/2)(n lg(n)) – (c1 lg2 / 2)n ≤ T(n/2) ≤ c4(...)
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Inductive proof, continuedInductive proof, continued

 Combining the two, ∃ c1, c2, c3, c4 such that:

 2T(n/2) + c1(n) ≤ T(n) ≤ 2T(n/2) + c2(n)

 ⇒ 2(c3/2)(n lg(n)) – 2(c1 lg2 / 2)n + c1(n) ≤ T(n) ≤ …

 ⇒ c3(n lg(n)) – (c1 lg2 + c1)n ≤ T(n) ≤ …

 ⇒ c3(n lg(n)) – (2c1)n ≤ T(n) ≤ c4(n lg(n)) – (2c2)n

 ⇒ c3(n lg(n)) ≤ T(n) ≤ c5(n lg(n))

● LHS of last step: just need c1>0

● RHS of last step: we can't choose c2, c4,
but we can find an n0 such that for all n>n0,
the c4(n lg(n)) term overwhelms the (2c2)n term

 This proves that T(n) = θ(n lg(n))
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Master method for recurrencesMaster method for recurrences

 If the recurrence has this specific form:
● T(n) = a T(n/b) + f(n)

 e.g., merge sort: a = 2, b = 2, f(n) = θ(n)

 Then compare f(n) with nlog_b(a):
● If f(n) = θ(nlog_b(a)):

 Leaves/roots balanced: T(n) = θ(nlog_b(a) lg(n))

● Else if f(n) = O(nlog_b(a)-ε) for some ε>0,
 Leaves dominate the work: T(n) = θ(nlog_b(a))

● Else if f(n) = Ω(nlog_b(a)+ε) for some ε>0
and a f(n/b) ≤ c f(n) for some c<1 and big n,

 Roots dominate the work: T(n) = θ(f(n))
 Regularity condition is fine for, e.g., f(n) = nk
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Master method: examplesMaster method: examples

 Merge sort: T(n) = 2T(n/2) + θ(n)
 a=2, b=2, f(n) = θ(n)

● f(n) = θ(n) = θ(nlog_2(2))
 so leaves and roots contribute work equally

● ⇒ T(n) = θ(nlog_2(2) lg(n)) = θ(n lg(n))
 Strassen matrix multiply: T(n) = 7T(n/2) + θ(n2)

 a=7, b=2, f(n) = θ(n2)

● f(n) = θ(n2) = O(nlog_2(7)-ε)
 log27 ≈ 2.8, so pick an ε between 0 and 0.8

 Leaves dominate the work

● ⇒ T(n) = θ(nlog_2(7)) ≈ θ(n2.8)
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Gaps in master thm coverageGaps in master thm coverage

 Not all recurrences aT(n/b) + f(n) work in master!
● e.g., T(n) = 2T(n/2) + n lg(n)

 n lg(n) ≠ θ(nlog_2(2)) = θ(n)
 n lg(n) ≠ O(n1-ε), for any ε>0
 n lg(n) ≠ Ω(n1+ε), for any ε>0

(because lg(n) ≠ Ω(nε) for any ε>0)

 Polylog extension to master theorem:
● If f(n) = θ(nlog_b(a) lgk(n))

 where lgk(n) = (lg(n))k

 Then T(n) = θ(nlog_b(a) lgk+1(n))

● (old case was with k=0)
 Above example: T(n) = θ(n lg2(n))


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

