Ch4: Proofs and Induction

18 Sep 2012 CMPT231 Dr. Sean Ho Trinity Western University

Review of discrete math: Logic and notation Monotonicity, limits Iterated functions and Fibonacci Mathematical proofs Proving asymptotic behaviour ch4: Solving recurrences Proof by induction ("substitution") Proof by "master method"

Mathematical logic

Some notation:

• ¬A, or !A: "not A"

• if A = "it is Tuesday", then $\neg A =$ "it is not Tuesday"

• $A \Rightarrow B$: "A implies B"; "if A, then B"

- The contrapositive of "A \Rightarrow B" is " \neg B \Rightarrow \neg A"
 - Contrapositive is equivalent to original statement
 - → "If Tues, then meatloaf" ↔
 "If not meatloaf, then not Tues"
- The converse of " $A \Rightarrow B$ " is " $\neg A \Rightarrow \neg B$ "
 - Converse is not equivalent to original statement
 - converse: "If not Tues, then not meatloaf"

• \forall : "for all": e.g., "x² > x, \forall x > 1"

 \bullet]; "there exists": e.g., " $\exists x s.t. x^2 < x$ "

Discrete math review

f(x) is monotone increasing ("non-decreasing") iff $x < y \Rightarrow f(x) \leq f(y)$ • f(x) is strictly increasing iff $x < y \Rightarrow f(x) < f(y)$ a mod n (in programming: "a % n") is the remainder of a when divided by n 17 mod 5 = 2 $\lim_{x \to a} f(x) = b \quad ("limit as x goes to a of f(x) is b")$ means $\forall \epsilon > 0$, $\exists \delta > 0$: $(|x - a| < \delta) \Rightarrow (|f(x) - b| < \epsilon)$ $\lim_{n \to \infty} f(n) = b$ ("limit as n goes to ∞ of f(n) is b") means $\forall \epsilon > 0$, $\exists n_0$: $(n > n_0) \Rightarrow (|f(n) - b| < \epsilon)$

Math review: iterated functions

Iterated functions (e.g., recursion):

- f⁽ⁱ⁾(x): the function f applied i times to x
 - f(f(f(... f(x) ...)))
 - Not the same as fⁱ(x) = (f(x))ⁱ
 - e.g., $\log^{(2)}(1000) = \log(\log(1000)) = \log(3) \approx 0.477$
 - → but $\log^2(1000) = (\log(1000))^2 = 3^2 = 9$
 - f⁽⁰⁾(x) is defined to be just x (apply f zero times)
- Iterated log: $lg^*(n) = min(i \ge 0 : lg^{(i)}(n) \le 1)$
 - "number of times Ig needs to be applied to n until the result is ≤ 1 "

• $|g^*(16) = 3$: |g(|g(|g(16))) = |g(|g(4)) = |g(2) = 1

Fibonacci and golden ratio

The nth Fibonacci number is $F_n = F_{n-1} + F_{n-2}$ • Start with $F_0 = 0$, $F_1 = 1$ • 0, 1, 1, 2, 3, 5, 8, 13, 21, … → (also see Lucas numbers: $F_0 = 2$) **Golden ratio** φ (and conjugate $\widetilde{\varphi}$) satisfy $x^2 = x + 1$ • $\phi = (1 \pm \sqrt{5})/2 \approx 1.61803...$ and -0.61803... = #3.2-7 proves that $F_n = (\phi^n - \phi^n) / \sqrt{5}$ • The second part $|\widetilde{\varphi^n}| / \sqrt{5} < \frac{1}{2}$, so $F_n = \left[\phi^n / \sqrt{5} + \frac{1}{2} \right]$ → i.e., $F_n = round(\phi^n/\sqrt{5})$ grows exponentially! **CMPT231: proofs and induction**

Review of discrete math: Logic and notation Monotonicity, limits Iterated functions and Fibonacci Mathematical proofs Proving asymptotic behaviour ch4: Solving recurrences Proof by induction ("substitution") Proof by "master method"

Proving asymptotic behaviour

e.g., p.52 #3.1-2: show that for all constants a, b, with b>0: $(n + a)^{b} = \Theta(n^{b})$ • i.e., find $n_0, c_1, c_2: \forall n > n_0, c_1n^b \le (n + a)^b \le c_2n^b$ • Find lower and upper bounds on $(n + a)^{b}$ • We observe that $n+a \ge n/2$ if n > 2|a|, and that $n+a \leq 2n$ if n > |a|• so $n/2 \le n+a \le 2n$, as long as n > 2|a|Then by the monotonicity of x^{b} (x>0, b>0), • $(n/2)^{b} \leq (n + a)^{b} \leq (2n)^{b}$, when n > 2|a|• So we pick $n_0 = 2|a|$, $c_1 = 2^{-b}$, and $c_2 = 2^{b}$.

Proving asymptotic behaviour

• e.g., p.62 #3-3: $(\lg n)! = \omega(n^3)$ Approach: take | g of both sides • LHS: use Stirling: $n! = \sqrt{(2\pi n)} (n/e)^n (1 + \Theta(1/n))$ $\bullet \Rightarrow |q(n!) = \Theta(n |q n) \qquad (p.58, Eq 3.19)$ ◆ ⇒ lg((lg n)!) = Θ((lg n) lg(lg n)) \rightarrow Substitute n \rightarrow lg n and use monotonicity of lg • RHS: $lg(n^3) = 3$ (lg n) • $lg(lg n) = \omega(3)$, so now put it together: • $lg((lg n)!) = \Theta((lg n) lg(lg n))$ $= \omega(3 \lg n)$ $= \omega(\lg(n^3))$ • Hence, by monotonicity of Ig, (Ig n)! = $\omega(n^3)$ **CMPT231:** proofs and induction 18 Sep 2012 9

Review of discrete math: Logic and notation Monotonicity, limits Iterated functions and Fibonacci Mathematical proofs Proving asymptotic behaviour ch4: Solving recurrences • Proof by induction ("substitution") Proof by "master method"

Mathematical induction

■ Deduction: general principles ⇒ specific case
 ■ Induction: representative case ⇒ general rule
 ■ Needs at least two axioms (givens):

- Base case: starting point, e.g., rule at n=1
- Inductive step: if the rule holds at some n, then it also holds at n+1

From these two axioms, we prove that the given rule holds for all (positive) n

Proof by induction: example

Last time, we mentioned Gauss' formula for
1 + 2 + ... + (n-1) + n = (n)(n+1)/2
Now we prove it by induction:
Proof of base case (n=1): 1 = (1)(1+1)/2
Proof of inductive step:

- Assume: 1 + ... + n = (n)(n+1)/2
- Want to prove: 1 + ... + (n+1) = (n+1)(n+2)/2
- i.e., prove: (n)(n+1)/2 + (n+1) = (n+1)(n+2)/2
 - * $(n+1)(n+2)/2 = (n^2+3n+2)/2$ = $((n^2+n) + (2n+2))/2$
 - $= (n^{2}+n)/2 + (2n+2)/2$
 - = n(n+1)/2 + (n+1)

Induction for recurrences

Proof by induction also can apply to recurrences:
 e.g., complexity of merge sort:

- T(1) = $\theta(1)$, and
- T(n) = $2T(n/2) + \theta(n)$

If we have a "guess" about the solution to T(n), we can prove by induction if that guess is correct:
 Guess: T(n) = θ(n lg(n))

Proof:

• Base case: $T(1) = \theta(1 | g(1)) = \theta(1)$ (i.e., constant time)

Inductive step: (next slide)

Inductive proof for merge sort:

• Assume: $T(m) = \theta(m \lg(m))$, for m = n-1• In fact, can assume this holds for all m < n• Want to prove: $T(n) = \theta(n \log(n))$ • i.e., for big n, there exist c_1 , c_2 such that $C_1(n \lg(n)) \le T(n) \le C_2(n \lg(n))$ $T(n) = 2T(n/2) + \theta(n)$ (from the recurrence) → ∃ c₁, c₂: 2T(n/2) + c₁(n) ≤ T(n) ≤ 2T(n/2) + c₂(n) ■ but $T(n/2) = \theta((n/2) | g(n/2))$, so → ∃ c₃, c₄: c₃(n/2 lg(n/2)) ≤ T(n/2) ≤ c₄(n/2 lg(n/2)) → $(c_3/2)(n \log(n) - n \log 2) \le T(n/2) \le c_4(...)$ → $(c_3/2)(n lg(n)) - (c_1 lg2 / 2)n ≤ T(n/2) ≤ c_4(...)$

Inductive proof, continued

Combining the two, ∃ c₁, c₂, c₃, c₄ such that:

- $2T(n/2) + c_1(n) \le T(n) \le 2T(n/2) + c_2(n)$
- → 2(c₃/2)(n lg(n)) 2(c₁ lg2 / 2)n + c₁(n) ≤ T(n) ≤ ...
- \Rightarrow c₃(n lg(n)) (c₁ lg2 + c₁)n \leq T(n) \leq ...
- → $c_3(n \lg(n)) (2c_1)n \le T(n) \le c_4(n \lg(n)) (2c_2)n$
- → $c_3(n \lg(n)) \leq T(n) \leq c_5(n \lg(n))$
- LHS of last step: just need $c_1 > 0$
- RHS of last step: we can't choose c₂, c₄,
 but we can find an n₀ such that for all n>n₀,
 the c₄(n lg(n)) term overwhelms the (2c₂)n term

-This proves that $T(n) = \theta(n \log(n))$

15

Review of discrete math: Logic and notation Monotonicity, limits Iterated functions and Fibonacci Mathematical proofs Proving asymptotic behaviour ch4: Solving recurrences Proof by induction ("substitution") Proof by "master method"

Master method for recurrences

If the recurrence has this specific form:
 T(n) = a T(n/b) + f(n)

• e.g., merge sort: a = 2, b = 2, $f(n) = \theta(n)$ Then compare f(n) with $n^{\log_b(a)}$:

• If $f(n) = \theta(n^{\log_b(a)})$:

• Leaves/roots balanced: $T(n) = \theta(n^{\log_b(a)} | g(n))$ • Else if $f(n) = O(n^{\log_b(a)-\epsilon})$ for some $\epsilon > 0$,

• Leaves dominate the work: $T(n) = \theta(n^{\log_b(a)})$

• Else if $f(n) = \Omega(n^{\log_b(a)+\epsilon})$ for some $\epsilon > 0$ and a $f(n/b) \le c f(n)$ for some c < 1 and big n,

• **Roots** dominate the work: $T(n) = \theta(f(n))$

Regularity condition is fine for, e.g., $f(n) = n^{k}$

Master method: examples

• Merge sort: $T(n) = 2T(n/2) + \theta(n)$ • a=2, b=2, $f(n) = \theta(n)$ • $f(n) = \theta(n) = \theta(n^{\log_2(2)})$ so leaves and roots contribute work equally • \Rightarrow T(n) = $\theta(n^{\log_2(2)} | \mathbf{q}(n)) = \theta(n | \mathbf{q}(n))$ Strassen matrix multiply: $T(n) = 7T(n/2) + \theta(n^2)$ • a=7, b=2, $f(n) = \theta(n^2)$ • $f(n) = \theta(n^2) = O(n^{\log_2(7)-\epsilon})$ • $\log_2 7 \approx 2.8$, so pick an ϵ between 0 and 0.8 Leaves dominate the work • \Rightarrow T(n) = $\theta(n^{\log_2(7)}) \approx \theta(n^{2.8})$

Gaps in master thm coverage

Not all recurrences aT(n/b) + f(n) work in master!
 e.g., T(n) = 2T(n/2) + n lg(n)

- $n lg(n) \neq \theta(n^{log_2(2)}) = \theta(n)$
- $n lg(n) \neq O(n^{1-\epsilon})$, for any $\epsilon > 0$
- $n lg(n) \neq \Omega(n^{1+\epsilon})$, for any $\epsilon > 0$ (because $lg(n) \neq \Omega(n^{\epsilon})$ for any $\epsilon > 0$)

Polylog extension to master theorem:

- If $f(n) = \theta(n^{\log_b(a)} | g^k(n))$
 - where $lg^k(n) = (lg(n))^k$
 - Then T(n) = $\theta(n^{\log_b(a)} | g^{k+1}(n))$
- (old case was with k=0)

Above example: $T(n) = \theta(n | g^2(n))$