Exam 1: ch1-4

2 Oct 2012 CMPT231 Dr. Sean Ho Trinity Western University

Exam first until 14:30 Open book, paper notes No electronic devices Please show your work

Exam 1: 40pts

Illustrate the maximum subarray algorithm (p.72) on this 12-item array: [8, -3, -2, -2, 3, 1, 5, -3, -3, 2, 2, -1] • Prove from definition: $n^2 + 2n \lg n = \Theta(n^2)$ Find functions $f,g \ge 0$ so that $f \ne O(g)$ and $g \ne O(f)$ (prove) Solve the following recurrence (with proof) $(T(1) = \Theta(1))$: • $T(n) = 2T(n/3) + \Theta(lg(n^2))$ Consider the following pseudocode: → fib(n): • if $n \leq 2$: return 1 else: return fib(n-1) + fib(n-2) Write a recurrence for its complexity Solve the recurrence (hint: p.60 Eq 3.25) • Re-implement the function to perform in $\Theta(n)$

Exam 1: solutions #1 (6pts)

Exam 1: solutions #2 (7pts)

We want to show $\exists n_0, c_1, c_2 > 0$: $\forall n > n_0, d_1$ • $0 \le c_1 n^2 \le n^2 + 2n \lg n \le c_2 n^2$ • We do this by showing $0n^2 \le 2n$ lg $n \le 1n^2$: • if n > 1, then $0 \le 2n \lg n$. • if n > 5, then $n^2 \le 2^n$ $\Rightarrow |q(n^2) \leq n$ \Rightarrow 2lg n \leq n \Rightarrow 2n lg n \leq n². Thus, with $n_0 = 5$, $c_1 = 1$, $c_2 = 2$, we have: $\forall n > 5$, • $0 \le 1n^2 \le n^2 + 2n \lg n \le 2n^2$. Hence $n^2 + 2n \lg n \in \Theta(n^2)$. CMPT231: midterm exam ch1-4 2 Oct 2012

4

Exam 1: solutions #3 (8 pts)

Many possible choices here; one technique is to ensure that f and g take turns touching zero: • e.g., $f(n) = n(1 + (-1)^n), g(n) = n(1 - (-1)^n).$ Both f and g are in O(n), but • When n is odd, f(n)=0, and g(n)=2n• When n is even, f(n)=2n, and g(n)=0. **So for any n_0, c > 0:** • Any odd $n > n_0$ will have g(n) = 2n > 0 = cf(n), • (And thus $g \notin O(f)$) • Any even $n > n_0$ will have f(n) = 2n > 0 = cg(n), (And thus f ∉ O(g)) CMPT231: midterm exam ch1-4 2 Oct 2012

5

Exam 1: solutions #4 (7pts)

Master method case 1 (according to textbook):

- $f(n) = lg(n^2) = 2lg n$
- $\Theta(n^{\log_b(a) \varepsilon}) = \Theta(n^{\log_3(2) \varepsilon}).$

For any ε < log₃(2) (e.g., ε = 0.5), this is still a polynomial
Any polylog is slower than any polynomial:
∀ a, b>0, lg^b n = o(n^a) (see p.57)
Hence 2lg n ∈ o(n^{log_3(2) - ε}) ⊂ O(n^{log_3(2) - ε}), so Case 1 applies.
The solution is T(n) = Θ(n^{log_3(2)}).

6

Exam 1: solutions #5 (12 pts)

Recurrence: $T(n) = T(n-1) + T(n-2) + \Theta(1)$ for n > 2, and $T(n) = \Theta(1)$ for $n \le 2$ Solution: $T(n) = \Theta(Fib(n))$ • By Eq. 3.25, $T(n) = \Theta(|\phi|^n)$ (exponential) $\blacksquare A \Theta(n)$ solution: fib(n): → if n \leq 2: return 1 A $\Theta(1)$ solution: → (pa, gdpa) = (1, 1) fib(n): phi = (1 + sqrt(5))/2→ for i in 3 .. n: return pow(phi, n) cur = pa + gdpa gdpa = pa pa = cur

→ return cur