
Ch8: Linear-time sortsCh8: Linear-time sorts
Ch11: Hash tablesCh11: Hash tables

9 Oct 2012
CMPT231
Dr. Sean Ho
Trinity Western University

9 Oct 2012CMPT231: linear-time sorts 2CMPT231: linear-time sortsCMPT231: linear-time sorts

Outline for todayOutline for today

● Proof why comparison sorts must be Ω(n lg n)
 Linear-time non-comparison sorts:

● Counting sort
● Radix sort, complexity
● Bucket sort: proof w/ probabilistic analysis

 Hash tables:
● Collision handling by chaining
● Hash functions and universal hashing
● Collision handling by open addressing

9 Oct 2012CMPT231: linear sorts and hashtables 3CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Summary of sorting algorithmsSummary of sorting algorithms

 Comparison sorts (ch2, 6, 7)
● Insertion sort: Θ(n2), easy to program, slow
● Merge sort: Θ(n lg(n)), out-of-place sorting,

slow due to lots of copying / memory operations
● Heap sort: Θ(n lg(n)), in-place, uses max-heap
● Quick sort: Θ(n2) worst-case, Θ(n lg(n)) average,

in-place, fast (small) constant factors
 Linear-time non-comparison sorts (ch8):

● Counting sort: k distinct values: Θ(k)
● Radix sort: d digits w/k values: Θ(d(n+k))
● Bucket sort: for uniform distrib. of values: Θ(n)

9 Oct 2012CMPT231: linear sorts and hashtables 4CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Comparison sorts are Comparison sorts are ΩΩ(n lg n)(n lg n)

 Decision tree model of computation:
● Leaves are possible outputs

 i.e., permutations of the input

● Nodes are decision points
 when comparisons are made

● Path through tree is one run on an input
 # leaves = # permutations = n!
 # comparisons = # nodes along path

● = depth of tree
● = Ω(lg(# leaves)) = Ω(lg n!)
● = Ω(n lg n) (by Stirling, Eq3.19)

9 Oct 2012CMPT231: linear sorts and hashtables 5CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Outline for todayOutline for today

● Proof why comparison sorts must be Ω(n lg n)
 Linear-time non-comparison sorts:

● Counting sort
● Radix sort, complexity
● Bucket sort: proof w/ probabilistic analysis

 Hash tables:
● Collision handling by chaining
● Hash functions and universal hashing
● Collision handling by open addressing

9 Oct 2012CMPT231: linear sorts and hashtables 6CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Linear-time sortsLinear-time sorts

 Linear-time sorts use assumptions on input data
● e.g., range of possible values is limited+known

 In practise, Θ(n) and Θ(n lg n) are very similar
 e.g., up to n=106: lg n < 21, a smallish factor

● A fast n lg n sort (like quicksort) may have
smaller constants than a linear-time sort

 Hybrid algorithms: e.g., (7.4-5)
● Pass 1 w/quicksort, stop when length < c
● Pass 2 w/insertion sort on “nearly sorted” data

 Recursion (function call) is expensive

9 Oct 2012CMPT231: linear sorts and hashtables 7CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Counting sortCounting sort

 Assume: values are integers in {0, …, k}
 countingSort(A, n, k):

➔ let B[1 .. n] be new (output) array
➔ let C[0 .. k] be temp array, initialised to 0
➔ for j in 1 .. n:

● C[A[j]] ++
➔ for i in 1 .. k:

● C[i] += C[i-1]
➔ for j in n .. 1:

● B[C[A[j]]] = A[j]
● C[A[j]] ––

➔ return B

 Stable: preserves order of duplicate keys

 Complexity: Θ(n+k) (watch out if k gets big!)

A: 2 5 3 0 2' 3' 0' 3''

C: 2 0 2 3 0 1

C: 2 2 4 7 7 8

B: 0 0' 2 2' 3 3' 3'' 5

A: 2 5 3 0 2' 3' 0' 3''

C: 2 0 2 3 0 1

C: 2 2 4 7 7 8

B: 0 0' 2 2' 3 3' 3'' 5

censuscensus

movemove

9 Oct 2012CMPT231: linear sorts and hashtables 8CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Radix sortRadix sort
 (How IBM made its fortune! punch cards ~1900)

 Sort one digit at a time, least-significant first
 Assume: values have max #digits d

 radixSort(A, n, d):
➔ for i in 1 .. d:

● stableSort(A on digit i)

● stableSort() can be,
e.g., counting sort

● (why is stability important?)
● (why start from

least-significant digit?)

3 7 4 5

2 9 1 3

1 0 1 6

2 0 1 6

9 1 3

3 7 4 5

2 9 1 3

1 0 1 6

2 0 1 6

9 1 3

9 Oct 2012CMPT231: linear sorts and hashtables 9CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Radix sort: complexityRadix sort: complexity

 Using counting sort, we have d loops of Θ(n+k):
● ⇒ complexity of radix sort is Θ(d(n+k))

 n items of d digits,
where each digit can take k values (e.g., k=10)

 If we split each b-bit item into r-bit digits, then
 d = b/r and k = 2r – 1

➔ e.g., 32-bit ints, 8-bit digits ⇒ b=32, r=8, d=4, k=255
 Complexity is Θ(d(n+k)) = Θ((b/r) (n + 2r))

● Balance the b/r with the n + 2r

 e.g., by choosing r = lg n:
 Θ((b/r) (n + 2r)) = Θ((b / lg n) (2n)) = Θ(bn / lg n)

➔ e.g., to sort n=216 ints of b=32-bits, use r=16-bit digits

9 Oct 2012CMPT231: linear sorts and hashtables 10CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Outline for todayOutline for today

● Proof why comparison sorts must be Ω(n lg n)
 Linear-time non-comparison sorts:

● Counting sort
● Radix sort, complexity
● Bucket sort: proof w/ probabilistic analysis

 Hash tables:
● Collision handling by chaining
● Hash functions and universal hashing
● Collision handling by open addressing

9 Oct 2012CMPT231: linear sorts and hashtables 11CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Bucket sortBucket sort

 Assume: values uniformly distributed over [0,1)
 Idea: Divide range [0,1) into n equal-size buckets

 e.g., each bucket can be a small array or linked list

● Distribute input into buckets
● Sort each bucket

 e.g., by insertion sort
 should be fast because

we expect small buckets

● Pull from each bucket in order
 Correctness: if A[i] ≤ A[j], then either:

● A[i]/n = A[j]/n (same bucket: insertion sort), or
● A[i]/n < A[j]/n (diff bucket: order of buckets)

Kent UKent U

http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/bucketSort.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/bucketSort.htm

9 Oct 2012CMPT231: linear sorts and hashtables 12CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Bucket sort: complexityBucket sort: complexity

 Let ni = # items in ith bucket

● Intuitively, ni ≈ 1 if items are uniformly distrib,

● so whole thing should be T(n) = Θ(n)
 But we need to do this carefully: observe that

 Find expected value: E[T(n)] = E[Θ(n) + Σ ni
2]

= Θ(n) + Σ E[ni
2]

 Claim that E[ni
2] = 2 – (1/n) for all i:

● if so, then E[T(n)] = Θ(n) + Σ (2 – 1/n)
= Θ(n) + 2n – 1
= Θ(n), and the proof is complete

T (n) = Θ(n)+∑
i=0

n−1

O (ni
2)

9 Oct 2012CMPT231: linear sorts and hashtables 13CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Bucket sort: Bucket sort: E[nE[n
ii
22]] = = 2 – (1/n)2 – (1/n)

 Use indicator variable:
 Xij = 1 if A[j] falls in bucket i, and 0 if not

 So ni = Σj Xij (count of items in this bucket)

 So E[ni
2] = E[(Σj Xij)

2] (count items)
= Σj E[Xij

2] + 2Σj Σk E[XijXik] (expand)

 Consider each term separately:
● Applying probability rules:

E[Xij
2] = 02 P(Xij = 0) + 12 P(Xij = 1)

= 02 (1 – 1/n) + 12 (1/n) = 1/n
● Since items j ≠ k are independent:

E[XijXik] = E[Xij] E[Xik] = (1/n)(1/n) = 1/n2

9 Oct 2012CMPT231: linear sorts and hashtables 14CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Bucket sort: finish proofBucket sort: finish proof

 So E[ni
2] = Σj E[Xij

2] + 2ΣjΣk E[XijXik]
= Σj (1/n) + 2ΣjΣk (1/n2)
= (1/n) Σj (1) + (2/n2) ΣjΣk (1)
= (1/n)(n) + (2/n2)(n(n-1)/2)
= 1 + n(n-1)/n2

= 2 – 1/n
 Hence expected running time for bucket sort is

E[T(n)] = Θ(n) + Σ (2 – 1/n)
= Θ(n) + 2n – 1
= Θ(n), linear time

 Assumptions: input uniformly distributed on [0,1)

9 Oct 2012CMPT231: linear sorts and hashtables 15CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Outline for todayOutline for today

● Proof why comparison sorts must be Ω(n lg n)
 Linear-time non-comparison sorts:

● Counting sort
● Radix sort, complexity
● Bucket sort: proof w/ probabilistic analysis

 Hash tables:
● Collision handling by chaining
● Hash functions and universal hashing
● Collision handling by open addressing

9 Oct 2012CMPT231: linear sorts and hashtables 16CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Hash tablesHash tables

 Dictionary of key-value pairs, e.g., Python dict
 Interface:

● insert(T, k, x): add item x with key k
● search(T, k): find an item with key k
● delete(T, x): delete specific item x

 Better than regular array (direct addressing) when
● Range of possible keys is too huge to allocate
● Actual keys are sparse subset of possible keys
● e.g., only have items at keys 0, 2, 40201300

 Regular array would allocate 40201300 entries!

9 Oct 2012CMPT231: linear sorts and hashtables 17CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

HashingHashing

 Main idea:
● Hash function

h(k): U → {0, …, m-1}
maps from set U of possible keys
into a set of m buckets

● Use h(k) as key instead of k
 Hash collision when two keys hash to same bucket

● Hopefully, this is rare
● Chain multiple items via linked list

 Idea is similar to bucket sort, but
● Don't know distribution or range of keys, so
● Use hash function to get uniform distribution

9 Oct 2012CMPT231: linear sorts and hashtables 18CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Implementing hash tablesImplementing hash tables

 insert(T, k, x):
● Insert x at the head of the linked list at slot h(k)
● Complexity: O(1)
● Assumes x is not already in the list

 search(T, k):
● Linear search through the list at slot h(k)
● Complexity: O(length of list at h(k))

 delete(T, x):
● If given pointer directly to item x, then O(1)
● If not, then need to do a search first

9 Oct 2012CMPT231: linear sorts and hashtables 19CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Hash table load factorHash table load factor

 Efficiency of hash table depends on search()

● Which depends on # items nh(k) in each bucket

 Load factor α = n/m:
● n = # items currently stored in hash table
● m = # buckets

 So E[nh(k)] = α (average # items per bucket)

 An unsuccessful search takes average Θ(1 + α):
● Computing hash function takes Θ(1)
● Linear search needs to search entire bucket
● Expected length of bucket is α

9 Oct 2012CMPT231: linear sorts and hashtables 20CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Complexity of search()Complexity of search()

 A successful search also takes average Θ(1 + α):
 # items searched = # collisions after x inserted

 Use indicator Xij = { 1 if h(ki) = h(kj), 0 else }

● E[Xij] = (prob. of collision) = 1/m

 E[# items searched] = E[(1/n) Σi(#items)]
= E[(1/n) Σi(1 + Σj Xij)]
= (1/n) Σi(1 + Σj E[Xij])
= (1/n) Σi(1 + Σj (1/m))
= 1 + (1/n) ΣiΣj (1/m)
= 1 + (1/nm) n(n-1)/2
= 1 + α/2 – α/2n

9 Oct 2012CMPT231: linear sorts and hashtables 21CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Outline for todayOutline for today

● Proof why comparison sorts must be Ω(n lg n)
 Linear-time non-comparison sorts:

● Counting sort
● Radix sort, complexity
● Bucket sort: proof w/ probabilistic analysis

 Hash tables:
● Collision handling by chaining
● Hash functions and universal hashing
● Collision handling by open addressing

9 Oct 2012CMPT231: linear sorts and hashtables 22CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Hash functionsHash functions

 Wlog, assume keys k are natural numbers
● If not, convert (e.g., ASCII codes)

 Want h(k) to be uniformly distributed on 0..m-1
● But distribution of keys k is unknown

● Keys ki and kj might not be independent

 Division hash: h(k) = k mod m
● Fast, but if m=2p, this is just the p least-sig bits

 If k is a string using radix-2p representation,
then permuting the string gives same hash (11.3-3)

● Choose m prime, not too close to a power of 2

9 Oct 2012CMPT231: linear sorts and hashtables 23CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Multiplication hashMultiplication hash

 Multiplication hash: h(k) = ⎣m(kA mod 1)⎦,
where 0<A<1 is some chosen constant

 Fast implementation using m=2p:
● Let w be the native machine word size (#bits)
● Pick a w-bit integer s in 0 < s < 2w, let A = s/2w

● Multiply s*k: product has 2w bits in words r0, r1

● Select the p most-sig bits of the lower word r0

try A ≈ φ – 1?try A ≈ φ – 1?

9 Oct 2012CMPT231: linear sorts and hashtables 24CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Universal hashesUniversal hashes

 Any fixed choice of hash function is vulnerable to
pathological input specifically designed to obtain
many hash collisions

 Keep a pool H of hash functions, randomly select
 Want pool to have the universal hash property:

● For any two keys j ≠ k, the number of hash
functions in H that cause a collision h(j) = h(k)
is ≤ |H| / m

 Then expected size of buckets is O(1+α),
and complexity of search is still O(1).

9 Oct 2012CMPT231: linear sorts and hashtables 25CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Outline for todayOutline for today

● Proof why comparison sorts must be Ω(n lg n)
 Linear-time non-comparison sorts:

● Counting sort
● Radix sort, complexity
● Bucket sort: proof w/ probabilistic analysis

 Hash tables:
● Collision handling by chaining
● Hash functions and universal hashing
● Collision handling by open addressing

9 Oct 2012CMPT231: linear sorts and hashtables 26CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Open addressingOpen addressing

 Another way to handle collisions, instead of chain
 Keys stored directly in table, no linked lists
 To search:

● Probe in slot h(k):
 if NIL, unsuccessful search (and we're done)
 if the entry is our key, we've found it
 if the entry is not our key, we hit a collision:

➔ Try again with next entry in probe sequence

 Hash function h: U x {0, …, m-1} → {0, …, m-1}
● Probe sequence: h(k,0), h(k,1), h(k,2), …

 Must be a permutation of the slots {0, …, m-1}

 Hash table may fill/overflow

9 Oct 2012CMPT231: linear sorts and hashtables 27CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Probe sequencingProbe sequencing

 Ideally, want uniform hashing: each permutation
is equally likely to be probe sequence for a key

 Linear probing:
● First try h(k), then h(k)+1, etc (mod m)
● Long filled runs get longer (more likely to hit)

 Quadratic probing:
● First try h(k), then jump around quadratically:

 h(k, i) = (h(k) + c1i + c2i
2) mod m

● Must choose c1,c2 to get full permutation

● Collision on initial h(k) ⇒ full sequence collision

9 Oct 2012CMPT231: linear sorts and hashtables 28CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Probe seq.: double hashingProbe seq.: double hashing

 Use two hash functions h1 and h2:

● Try h1(k) first, then use h2 to jump around:

 h(k, i) = (h1(k) + i h2(k)) mod m

● In order to get full permutation,
h2(k) and m must be relatively prime

 e.g., let m=2p and ensure h2(k) always odd

 or, let m be prime, and ensure 1 < h2(k) < m

 Each combination of h1(k) and h2(k) yields
a different probe sequence:
● total # sequences = Θ(n2)

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

