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Outline for todayOutline for today

● Proof why comparison sorts must be Ω(n lg n)
 Linear-time non-comparison sorts:

● Counting sort
● Radix sort, complexity
● Bucket sort: proof w/ probabilistic analysis

 Hash tables:
● Collision handling by chaining
● Hash functions and universal hashing
● Collision handling by open addressing
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Summary of sorting algorithmsSummary of sorting algorithms

 Comparison sorts (ch2, 6, 7)
● Insertion sort: Θ(n2), easy to program, slow
● Merge sort: Θ(n lg(n)), out-of-place sorting,

slow due to lots of copying / memory operations
● Heap sort: Θ(n lg(n)), in-place, uses max-heap
● Quick sort: Θ(n2) worst-case, Θ(n lg(n)) average, 

in-place, fast (small) constant factors
 Linear-time non-comparison sorts (ch8):

● Counting sort: k distinct values: Θ(k)
● Radix sort: d digits w/k values: Θ(d(n+k))
● Bucket sort: for uniform distrib. of values: Θ(n)
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Comparison sorts are Comparison sorts are ΩΩ(n lg n)(n lg n)

 Decision tree model of computation:
● Leaves are possible outputs

 i.e., permutations of the input

● Nodes are decision points
 when comparisons are made

● Path through tree is one run on an input
 # leaves = # permutations = n!
 # comparisons = # nodes along path

● = depth of tree
● = Ω(lg(# leaves)) = Ω(lg n!)
● = Ω(n lg n) (by Stirling, Eq3.19)
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Linear-time sortsLinear-time sorts

 Linear-time sorts use assumptions on input data
● e.g., range of possible values is limited+known

 In practise, Θ(n) and Θ(n lg n) are very similar
 e.g., up to n=106: lg n < 21, a smallish factor

● A fast n lg n sort (like quicksort) may have 
smaller constants than a linear-time sort

 Hybrid algorithms: e.g., (7.4-5)
● Pass 1 w/quicksort, stop when length < c
● Pass 2 w/insertion sort on “nearly sorted” data

 Recursion (function call) is expensive
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Counting sortCounting sort

 Assume: values are integers in {0, …, k}
 countingSort(A, n, k):

➔ let B[1 .. n] be new (output) array
➔ let C[0 .. k] be temp array, initialised to 0
➔ for j in 1 .. n:

● C[ A[ j ] ] ++
➔ for i in 1 .. k:

● C[ i ] += C[ i-1 ]
➔ for j in n .. 1:

● B[ C[ A[ j ] ] ] = A[ j ]
● C[ A[ j ] ] ––

➔ return B

 Stable: preserves order of duplicate keys

 Complexity: Θ(n+k) (watch out if k gets big!)

A: 2 5 3 0 2' 3' 0' 3''

C: 2 0 2 3 0 1

C: 2 2 4 7 7 8

B: 0 0' 2 2' 3 3' 3'' 5

A: 2 5 3 0 2' 3' 0' 3''

C: 2 0 2 3 0 1

C: 2 2 4 7 7 8

B: 0 0' 2 2' 3 3' 3'' 5

censuscensus

movemove
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Radix sortRadix sort
 (How IBM made its fortune! punch cards ~1900)

 Sort one digit at a time, least-significant first
 Assume: values have max #digits d

 radixSort(A, n, d):
➔ for i in 1 .. d:

● stableSort(A on digit i) 

● stableSort() can be,
e.g., counting sort

● (why is stability important?)
● (why start from

least-significant digit?)

3 7 4 5

2 9 1 3

1 0 1 6

2 0 1 6

9 1 3

3 7 4 5

2 9 1 3

1 0 1 6

2 0 1 6

9 1 3
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Radix sort: complexityRadix sort: complexity

 Using counting sort, we have d loops of Θ(n+k):
● ⇒ complexity of radix sort is Θ(d(n+k))

 n items of d digits,
where each digit can take k values (e.g., k=10)

 If we split each b-bit item into r-bit digits, then
 d = b/r and k = 2r – 1

➔ e.g., 32-bit ints, 8-bit digits ⇒ b=32, r=8, d=4, k=255
 Complexity is Θ(d(n+k)) = Θ( (b/r) (n + 2r) )

● Balance the b/r with the n + 2r

 e.g., by choosing r = lg n:
 Θ( (b/r) (n + 2r) ) = Θ( (b / lg n) (2n) ) = Θ( bn / lg n )

➔ e.g., to sort n=216 ints of b=32-bits, use r=16-bit digits
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Bucket sortBucket sort

 Assume: values uniformly distributed over [0,1)
 Idea: Divide range [0,1) into n equal-size buckets

 e.g., each bucket can be a small array or linked list

● Distribute input into buckets
● Sort each bucket

 e.g., by insertion sort
 should be fast because

we expect small buckets

● Pull from each bucket in order
 Correctness: if A[i] ≤ A[j], then either:

● A[i]/n = A[j]/n (same bucket: insertion sort), or
● A[i]/n < A[j]/n (diff bucket: order of buckets)

Kent UKent U

http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/bucketSort.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/bucketSort.htm
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Bucket sort: complexityBucket sort: complexity

 Let ni = # items in ith bucket

● Intuitively, ni ≈ 1 if items are uniformly distrib,

● so whole thing should be T(n) = Θ(n)
 But we need to do this carefully: observe that

 Find expected value: E[ T(n) ] = E[ Θ(n) + Σ ni
2 ]

= Θ(n) + Σ E[ni
2]

 Claim that E[ni
2] = 2 – (1/n) for all i:

● if so, then E[ T(n) ] = Θ(n) + Σ (2 – 1/n)
= Θ(n) + 2n – 1
= Θ(n), and the proof is complete

T (n) = Θ(n)+∑
i=0

n−1

O (ni
2)



9 Oct 2012CMPT231: linear sorts and hashtables 13CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Bucket sort: Bucket sort: E[nE[n
ii
22]] =  = 2 – (1/n)2 – (1/n)

 Use indicator variable:
 Xij = 1 if A[j] falls in bucket i, and 0 if not

 So ni = Σj Xij (count of items in this bucket)

 So E[ ni
2 ] = E[ ( Σj Xij )

2 ] (count items)
= Σj E[ Xij

2 ] + 2Σj Σk E[ XijXik ] (expand)

 Consider each term separately:
● Applying probability rules:

E[ Xij
2 ] = 02 P(Xij = 0) + 12 P(Xij = 1)

= 02 (1 – 1/n) + 12 (1/n) = 1/n
● Since items j ≠ k are independent:

E[ XijXik ] = E[ Xij ] E[ Xik ] = (1/n)(1/n) = 1/n2
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Bucket sort: finish proofBucket sort: finish proof

 So E[ ni
2 ] = Σj E[ Xij

2 ] + 2ΣjΣk E[ XijXik ] 
= Σj (1/n) + 2ΣjΣk (1/n2)
= (1/n) Σj (1) + (2/n2) ΣjΣk (1)
= (1/n)(n) + (2/n2)( n(n-1)/2 )
= 1 + n(n-1)/n2

= 2 – 1/n
 Hence expected running time for bucket sort is

E[ T(n) ] = Θ(n) + Σ (2 – 1/n)
= Θ(n) + 2n – 1
= Θ(n), linear time

 Assumptions: input uniformly distributed on [0,1)
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Hash tablesHash tables

 Dictionary of key-value pairs, e.g., Python dict
 Interface:

● insert(T, k, x): add item x with key k
● search(T, k): find an item with key k
● delete(T, x): delete specific item x

 Better than regular array (direct addressing) when
● Range of possible keys is too huge to allocate
● Actual keys are sparse subset of possible keys
● e.g., only have items at keys 0, 2, 40201300

 Regular array would allocate 40201300 entries!
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HashingHashing

 Main idea:
● Hash function

h(k): U → {0, …, m-1}
maps from set U of possible keys
into a set of m buckets

● Use h(k) as key instead of k
 Hash collision when two keys hash to same bucket

● Hopefully, this is rare
● Chain multiple items via linked list

 Idea is similar to bucket sort, but
● Don't know distribution or range of keys, so
● Use hash function to get uniform distribution
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Implementing hash tablesImplementing hash tables

 insert(T, k, x):
● Insert x at the head of the linked list at slot h(k)
● Complexity: O(1)
● Assumes x is not already in the list

 search(T, k):
● Linear search through the list at slot h(k)
● Complexity: O( length of list at h(k) )

 delete(T, x):
● If given pointer directly to item x, then O(1)
● If not, then need to do a search first
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Hash table load factorHash table load factor

 Efficiency of hash table depends on search()

● Which depends on # items nh(k) in each bucket

 Load factor α = n/m:
● n = # items currently stored in hash table
● m = # buckets

 So E[ nh(k) ] = α (average # items per bucket)

 An unsuccessful search takes average Θ(1 + α):
● Computing hash function takes Θ(1)
● Linear search needs to search entire bucket
● Expected length of bucket is α
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Complexity of search()Complexity of search()

 A successful search also takes average Θ(1 + α):
 # items searched = # collisions after x inserted

 Use indicator Xij = { 1 if h(ki) = h(kj), 0 else }

● E[ Xij ] = (prob. of collision) = 1/m

 E[ # items searched ] = E[ (1/n) Σi( #items ) ]
= E[ (1/n) Σi( 1 + Σj Xij ) ]
= (1/n) Σi( 1 + Σj E[ Xij ] )
= (1/n) Σi( 1 + Σj (1/m) )
= 1 + (1/n) ΣiΣj (1/m)
= 1 + (1/nm) n(n-1)/2
= 1 + α/2 – α/2n
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Hash functionsHash functions

 Wlog, assume keys k are natural numbers
● If not, convert (e.g., ASCII codes)

 Want h(k) to be uniformly distributed on 0..m-1
● But distribution of keys k is unknown

● Keys ki and kj might not be independent

 Division hash: h(k) = k mod m
● Fast, but if m=2p, this is just the p least-sig bits

 If k is a string using radix-2p representation,
then permuting the string gives same hash (11.3-3)

● Choose m prime, not too close to a power of 2
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Multiplication hashMultiplication hash

 Multiplication hash: h(k) = ⎣m(kA mod 1)⎦,
where 0<A<1 is some chosen constant

 Fast implementation using m=2p:
● Let w be the native machine word size (#bits)
● Pick a w-bit integer s in 0 < s < 2w, let A = s/2w

● Multiply s*k: product has 2w bits in words r0, r1

● Select the p most-sig bits of the lower word r0

try A ≈ φ – 1?try A ≈ φ – 1?
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Universal hashesUniversal hashes

 Any fixed choice of hash function is vulnerable to 
pathological input specifically designed to obtain 
many hash collisions

 Keep a pool H of hash functions, randomly select
 Want pool to have the universal hash property:

● For any two keys j ≠ k, the number of hash 
functions in H that cause a collision h(j) = h(k) 
is ≤ |H| / m

 Then expected size of buckets is O(1+α),
and complexity of search is still O(1).
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Open addressingOpen addressing

 Another way to handle collisions, instead of chain
 Keys stored directly in table, no linked lists
 To search:

● Probe in slot h(k):
 if NIL, unsuccessful search (and we're done)
 if the entry is our key, we've found it
 if the entry is not our key, we hit a collision:

➔ Try again with next entry in probe sequence

 Hash function h: U x {0, …, m-1} → {0, …, m-1}
● Probe sequence: h(k,0), h(k,1), h(k,2), …

 Must be a permutation of the slots {0, …, m-1}

 Hash table may fill/overflow
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Probe sequencingProbe sequencing

 Ideally, want uniform hashing: each permutation 
is equally likely to be probe sequence for a key

 Linear probing:
● First try h(k), then h(k)+1, etc (mod m)
● Long filled runs get longer (more likely to hit)

 Quadratic probing:
● First try h(k), then jump around quadratically:

 h(k, i) = (h(k) + c1i + c2i
2) mod m

● Must choose c1,c2 to get full permutation

● Collision on initial h(k) ⇒ full sequence collision



9 Oct 2012CMPT231: linear sorts and hashtables 28CMPT231: linear sorts and hashtablesCMPT231: linear sorts and hashtables

Probe seq.: double hashingProbe seq.: double hashing

 Use two hash functions h1 and h2:

● Try h1(k) first, then use h2 to jump around:

 h(k, i) = (h1(k) + i h2(k)) mod m

● In order to get full permutation,
h2(k) and m must be relatively prime

 e.g., let m=2p and ensure h2(k) always odd

 or, let m be prime, and ensure 1 < h2(k) < m

 Each combination of h1(k) and h2(k) yields
a different probe sequence:
● total # sequences = Θ(n2)
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